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Abstract

In this thesis, a neural network based on a biological cortical column is presented. The 

cortical column has been found to play the fundamental role in information processing in 

the cerebral cortex. The model of the column presented in this work displays similar 

functionality. The stress is laid on the cooperative behavior of many artificial columns 

interconnected in a network. The network is capable of recording trajectories of 

time-related events. Those recorded trajectories let the network use such time 

dependencies to perform breadth-first searches. The device can solve stimulus-response 

type problems in the given domain and because of that is called a neurosolver. The 

neurosolver can use a context update mechanism to perform dynamic searches. Two 

important features of the neurosolver, its generality and modularity, can be used to mimic 

hierarchical and, at the same time, parallel and distributed functionality of the cortex in 

an artificial environment.
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Introduction

The human brain has always been a focal point for many thinkers who were enchanted 

by the mysteries of perception, memory, recollection, abstraction and reasoning. The first 

known reference to the brain comes from an ancient Egyptian surgeon who recorded a 

number of cases of head and neck injuries along with their analysis. He noted with a 

surprise that although the head was injured, several patients had their motor or sensory 

capabilities impaired. Those observations must have been not well received among the 

contemporaries of the surgeon, since for the next twenty centuries the cardio-centric 

hypothesis was preferred by philosophers. Even Socrates and later Aristotle subscribed to 

that theory, although Aristotle proposed many innovative ideas in his treatises on 

memory. Democritus, circa 400 BC, located thoughts in the brain that was using "psychic 

atoms" to communicate with the rest of the body. Hypocrites confirmed that thesis 

through thorough clinical observations. In the third century BC. in Alexandria. 

Erasistratus dissected thousands of bodies mostly of criminals given to him by the kings. 

That enterprise was quite cruel, since many criminals were alive when the experiments 

took place, but the encephalono-centric hypothesis was enriched enormously. Later, 

again the brain lost its position in the world dominated by catholic bishops. Most of the 

scientists and philosophers were preoccupied w ith the proper position of the soul in their 

treatises, and placing any aspect of the intellect in the brain was close to a blasphemy. It 

was only in the seventeenth century when the encephalono-centric theories were revived 

by Gassendi.

Si hoot o f  Com puter Science, Carteton University
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The modern history of the brain research, or neuroscience as that branch of science has 

been called for several years, starts w ith the names of researchers like Ramon a Cayal 

127]. Broadmann |5 | and Lorente de No |ld ], Ramon a Cayal proved the neuronal 

architecture of the brain. Broadman divided the brain's cerebral cortex into 52 areas 

based on the micro-anatomy of the cortex and assigned a function to each of them. 

Lorente de No put forward the principles of intra-cortical circuits of neurons. More 

recent and known names are those of Hebb 113) and McCulloch and Pitts |22j who 

contributed to the field of neural networks, although at the time they worked that branch 

of science did not exist. Over the last thirty years the knowledge and ideas of the early 

researchers have been enriched by scientists like von der Malsburg |2(l|. Szentagothai. 

Mountcastle. Hubei f 15], Wiesel (15), Kandel 116), Schwartz | 16| and others and utilized 

by researchers lik~ Rosenblatt |29). Widrow 130j. Hoff 136), Kohonen |1X|, Hopfield 

f 14). Grossberg |10 |, Rumelhart |21 |, Ballard |4j and many others who engineered 

devices that mimic the behavior of the brain. Their contributions are enormous. There are 

many excellent publications describing the past and the present of neuroscience, neural 

networks and cognitive science. A two volume collection of papers edited by James 

Anderson and entitled "Neurocomputing” J3j may be a good source of knowledge about 

those achievements.

In spite of that enormous and common drive to research the bruin, thanks to which many 

discoveries have been made, many theories have been proved and many uses of the new 

knowledge have been found over several thousand of years, there is still a se1: of 

unknown to be explored by the current and future generations of scientists

In this thesis, the work on a special type of a neural network based on a model of a 

cortical column will be presented. The cortical column, the "module-concept", has been 

proposed as an anatomical entity by Szentagothai |31 |. Later, Mountcastle 123j enriched 

the hypothesis by describing the functional context of the cortical column. Today, the

,V< haul o f  C om puter St lent e. C arle ton (fn iversttv
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cortical column is widely accepted as a basic functional building block of the brain's 

cerebral cortex. It has been observed in every part of the cortex, although some aspects of 

its internal architecture vary from area to area. The behavior of the column seems to be 

similar in every region of the cortex as is its connectivity pattern. Many neuroscientists 

believe that the cortical column is also a basic computational component of the brain.

The goal of this thesis is to duplicate the model of the cortical column that was proposed 

by Burnod |7 | and to get better understanding of it through simplifications and 

modifications. The final model used in this work will be compared with original 

Burnod's model in Chapter 3 and Chapter 4.

It was an assertion for this thesis that the network in which the model of the cortical 

column is used should be universal and modular. The universality would make it possible 

(through the learning process) to customize the same network for uses in various 

domains, much like analogous VLSI chips can be customized for different applications. 

The modularity of the network would allow several small, specialized networks to be 

combined into a bigger, higher level network that could treat more complex problems. 

The network should be completely or at least regularly connected. Ultimately that 

architecture should be implementable in VLSI.

From the functional perspective, an attempt has been made to design a general purpose 

problem solver using the model of the cortical column. The network of cortical columns 

should be capable of computing solutions to problems in a given, well defined domain. 

The relationships between the objects in the domain are stored as temporal data during 

the learning process. The recollection mechanism produces solutions to presented 

problems in a form of sequences of state change patterns. The learning phase is not 

separated from th" performance phase as is the case in almost all other neural network 

architectures. Instead, like in the human brain, the learning is a continuous process. The

School o f  Com puter Science. Carle ton U niversity
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topographical relationships of the objects of tne domain were used explicitly, because the 

problem of creating such maps has been set led by others, for example Kohonen.

To test the network, or the neurosoiver as the network of cortical columns is called in this 

thesis, a workbench has been implemented in Smalltalk-80. The workbench includes the 

model of the cortical column and several variations of network architecture. The 

workbench includes a user interface with which it is easy to set the parameters and 

interact with the neurosoiver. but most of all to observe its behavior. The neurosoiver 

was also used in a simple application, a rat maze, to test some of its capabilities. The 

maze is also implemented in Smalltalk-80 with a proper user interface. The descriptions 

of both applications are parts of this work.

The author finds it valuable to present the basics of the functional anatomy of the brain, 

particularly the cerebral cortex, and micro-anatomy and connectivity of the cortical 

column before the description of the model and the architecture of the network. The 

description is far from being complete. For more details the user can consult one of the 

many good textbooks on neuroanatomy and neuroscience, for example by Schmitt J30| 

or Kandel and Schwartz 116).
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CHAPTER 1 

An insight into the human brain.

Evolution o f  the brain

The brain of a man. one of the most complex systems known, is the result of thousands 

or even millions years of evolution. Simple vertebrates had only a simple nervous tube, 

or spinal cord, that was sufficient for survival of the specie. That tube evolved to receive 

sensory information through various nerve fibers and send motor signals to contract

animal's primitive muscles. It is shown in Figure 1.

Figure 1. A primitive brain - a spinal cord.

Soon, it became apparent that it is easier to move in one direction rather than in many. It

was more important now* to know what was happening in the direction of the movement 

than in any other, so together with the evolution of the body there was also a 

specialization of the control system. The frontal, or anterior, with respect to the preferred 

direction of the movements, part of the spinal cord was receiving sensory signals that 

became more important than the signals from other parts of the body. That part refined

School o f  C om puter Science, Carleton U niversity
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its sensory capabilities and the brainstem, a precursor of the human brain, was born. The 

brainstem is illustrated in Figure 2 with its three parts marked.

M esencepnalon

P rosen cep h a lo n  R hom bencephalon

Figure 2. The brainstem - a precursor of the human 

brain.

New challenges from the changing environment induced further development in the 

motor and sensory systems. The brainstem grew, so the new' functionality could be 

controlled in a better, more direct manner. The frontal part of the brainstem was enlarged 

by addition of two cerebral hemispheres. The back, or posterior, part evolved into the 

cerebellum. Those new additions are shown in Figure 3. The cerebral hemispheres 

acquired the functionality for data analysis and decision making, like movement 

origination. The function of the cerebellum was to coordinate the execution of the 

movement commands. All mammals have brains like that shown in Figure 3. although 

the development of certain functions, and the parts of the brain supporting those 

functions, varies among species.

Cerebellum

Cerebral hemispheres Figure 3. Mammalian brain.

Humans have the best developed brain among all mammals. The biggest change in the 

relative size and functionality came to the cerebral hemispheres. The cerebral cortex

Si hool o f  Com puter S< lerti e. Carleton U niversity
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evolved into the control center with the most sophisticated functionality. It is no longer 

just a place where the facts are analyzed and actions generated in response. In the course 

of phylogenetical development, the relatively simple nervous tube evolved into the origin 

of intelligence.

Anatomy of the brain

Usually one thinks about the brain as being completely enclosed in the skull. In fact, 

however, the brain can be divided into three main parts (Figure 4), not necessarily 

located in the head:

• spinal cord,

• brainstem and

• forebrain.

The spinal cord is the lowest element of the brain that is also the oldest phylogenetically 

and still fulfills the same tasks of receiving the sensory' signals from the body parts and 

sending the motor commands to the muscles as in primitive vertebrates. It is divided into 

a number of segments with each segment servicing more or less the part of the body at 

the same height as the segment. The sensory nerves that enter the spinal cord from the 

back (or top in the animals, therefore called dorsal or superior) provide sensory 

information. They make synapses with the neurons that will carry that information to the 

thalamus and further to the cortex in the forebrain (see below). The tracts carrying the 

motor signal connect to the muscle's neurons in the frontal part of the spinal cord (or 

bottom in the animals, therefore called ventral or inferior).

School o f  Computer Science. Carleton University
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F o re b ra in

spinai c o r d \ \  Figure 4. Three basic parts of the human brain.

The functionality of many parts of the brainstem has not been completely determined. 

Generally speaking, the brainstem handles the basic life supporting functions. In many 

animals, the brainstem provides the highest level of functionality, that in better developed 

species were overtaken by the forebrain, like vision and audition. There are several 

entities that are relatively well understood. The hypothalamus is involved in almost all 

aspects of behavior, like feeding, sleeping, sexual behavior, temperature regulation, 

emotion control ard movement. The cerebellum is regarded as the center for equilibrium, 

postural reflexes and coordination of movements. Another interesting part of the 

brainstem is the reticular formation that has been assigned responsibility for 

consciousness, general arousal and controlling basic functions like breathing, heartbeat, 

body temperature, chemistry of the blood, etc.

The newest component in the evolution of the brain, the forebrain, and particularly the 

cerebral cortex, is the location of what we consider to constitute intelligence. The part of 

the forebrain and cerebral cortex will be described in the next sections in more detail, 

since they are more important as seen from the perspective o f the work described in this 

thesis.

A natom y  o f  th e  fo r ebr a in

The forebrain consists of the following five anatomical parts:

School o f  C om pu ter S cience, C arleton  U n iversity
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• neocortex or cerebral cortex,

• thalamus,

• basal ganglia and

• limbic system,

• olfactory bulbs.

Cerebral cortex

The cerebral cortex is the youngest brain structure and the relation of its size to the size 

of whole brain is the most visible difference between the brains of humans and animals. 

Because an average human is evidently more intelligent than an average animal, the 

neocortex has been thought to be the location of that value-added functionality. Many 

important experiments with animals and with humans confirmed that the cortex is the 

highest level center of information processing. A (most all sensory' data are transmitted to 

the cortex where they are analyzed. The response to the stimulus that depends heavily on 

the past experience, memory, is calculated, and the signals initiating proper action are 

sent to the lower level brain structures that carry out the commands.

The nature of the information processing that goes on in the cortex is the main interest of 

this thesis. Therefore, the cerebral cortex will be discussed in detail in several further 

sections of this work

School o f  C om puter Science, C arleton U niversity
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Cerebral cortex

Basal ■ 
ganglia ■ Thalamus

Figure 5. The thalamus and the basal ganglia: the input and the output o f the cortex.. 

Thalamus

The sensory' information, with the exception of smell data (see below), is sent to the 

cerebral cortex for analysis. The pathway, however, is not a direct one. The thalamus is 

the input switching system that passes the signals detected by senses to appropriate areas 

of the brain. Principally, the signals are directed to the primary somato-sensory areas, the 

visual areas, the auditory areas, etc. In addition, there are pathways to secondary and 

higher areas, but they have relatively small throughput. The primary, secondary and 

tertiary areas will be discussed later in this chapter.

The thalamus is not just a simple relay station. There are many reciprocal connections 

from the cortex, that carry signals that are used to modulate incoming input data. The 

data that is not important in a given context may be suppressed, and vice versa, a weak 

signal that the cortex indicates as essential may be amplified. The thalamus may even be 

instructed to expect certain input, so the proper action can be undertaken to diminish the 

difference between the expected and actual sensory data.

Sehool o f  C om puter S n en ce, Curleton U niversity
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Basal ganglia

There are many basic functions of the motor system that are controlled by the spinal 

cord, like the spinal reflex which ensures that as one group of muscles contracts, the 

opposing ones relax. More complex movements are the responsibility of higher and 

higher levels in the motor system. The basal ganglia is a part of the motor system that is. 

in lower vertebrates, the highest level center for motor control. In humans and higher 

vertebrates, the basal ganglia is the source of multiple signals initiating and terminating 

partial movements. It uses inhibition and modulation to control lower level motor 

subsystems in the brainstem and spinal cord, ensuring that movements are smooth. It 

closely cooperates with the cerebellum, that is responsible for coordination of the 

movements.

The basal ganglia is the main relay station for nerve fibers going from the motor cortex 

to the subordinate subsystems.

Limbic system

Initially, the limbic lobe was thought to provide olfactory functionality, because of its 

connection to the olfactory bulbs. That theory has been abandoned as was the hypothesis 

that there is a single function that the system realizes. It is still a long way to go before 

all o f the pans of the limbic lobe can be assigned a proper function. There is enough 

evidence, however, to state that the hippocampus that is a part of the limbic lobe is 

critical for memory storage, spatial organization, organization of movements, inhibition 

and learning.

School o f  C om puter Science, Carleton C n iversity
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Mammiliary bodies

Olfactory bulbs

Amygdala

Hippocampus

Figure 6. The limbic system and the olfactory bulbs.

The hippocampus has abundant connections with other parts of the limbic system. Many 

of the experiments showed that there are reward and punishment centers in the limbic 

lobe. Consequently, the data processed by the brain is being weighed in the hippocampus 

and the information considered worthy is stored in the memory. The data that is not 

important is discarded or stored only as long as it is needed for the current task to 

complete. There are no details, however, about the underlying mechanisms of that 

functionality.

Another part of the limbic lobe, the septum, seems to be responsible for emotions, 

something that usually is attributed to whole limbic system.

Olfactory bulbs

The sense of smell is considered to be the oldest sense that nas been mastered by the 

brain. That sense was very important in the evolution of vertebrates, since it could guide 

the animal to foot! and, as a result, increase its chances for survival. The olfactory bulbs 

that are part of the limbic system are responsible for the smell. It is very interesting, that 

the sense of smell is the only sense that is not handled by the cerebral cortex. It is
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probable, that the judgment centers developed in the limbic system because of the 

proximity to the smell center. Something that smelled good was worth remembering, 

while the opposite was best to forget. That might be the reason why the limbic system is 

so important to memory.

Anatomy o f  the cerebral  cortex

The cortex is a thin (a few millimeters), convoluted tissue that covers all lower level 

brain structures located inside the skull. There is a layer of gray matter, so called because 

of the high concentration of grayish cell bodies, and white matter, that is located below 

the former, again so called because of the high concentration of white neuronal fibers 

connecting neurons in various parts o f the brain. The space between the neurons and 

fibers is filled by glial cells. The function of glial cells is not definitely determined, but 

most o f the researchers assign them some support functions, like nutrition and waste 

disposal. Neurons, interconnected by a network of axons and dendrites, are the 

fundamental information processing units.

A single neuron

There are many types of neurons in the central nervous system in general, and in the 

cerebral cortex in particular. The anatomy and functionality of all of them is. however, 

similar. One of the most important neurons in the cortex, the pyramidal cell, is shown in 

Figure 7. The pyramidal cell consists, as other neurons do, of the cell body or soma, an 

axon and dendrites. The axon and the dendrites are Fibers that are attached to the soma. 

Usually, the axon is longer than the dendrites, because they carry signals from the neuron 

to other, sometimes very distant, areas of the nervous system. Axons make connections 

with somas of other neurons, with their dendrites and sometimes with other axons. The 

task of the dendrites is to capture signals from the axons in the neighborhood of the
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neuron and bring them to the soma. All signals are integrated in the neuron and the 

resulting integral determines the level o f excitation or activity o f the neuron. This activity 

is. in turn, transmitted over the axon to another set of neurons where the activity 

recalculation scheme is repeated.

The location where an axon make a contact with another entity is called a synapse. 

There are two types of synapses: symmetric, commonly viewed as inhibitory, and 

asymmetric, with excitatory nature. If an axon makes an inhibitory synapse, the activity 

carried over the axon will have a negative effect on the activity o f the recipient. The 

excitatory synapse has a reverse effect on the receiving cell.

“ I—Dendrite

i ^

Axon hillock-

Axon
Axon colateral

Jeteodendria

Terminate Figure 7. A neuron.

The topology of the connections that a neuron makes with other cells is determined by 

the genetic code. However, the synapses are highly adaptive devices, since their 

conductivity, i.e. the ability to transmit signals, may be modified. The extent of that
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modification depends on the pattern of activity in the pre-synaptic and post-synaptic 

entities. If there are certain regular changes in the patterns o f activity o f a number of 

neurons, and consequently, their synapses, then these changes may be encoded in the 

pattern of conductivity or strengths of the synapses transmitting signals between the 

involved cells. Later, the pattern of activity can be recalled even if only a part of the 

original pattern is known. The adaptivity of the synapses is the fundamental mechanism 

that the brain uses to store information and perform calculations. All artificial neural 

networks that attempt to mimic the circuitry of biological nervous systems make use of 

some kind of adaptive synapse. This computational paradigm is very often called 

connectionism.

The details of the communication between the cells, the transmission of the signals, the 

integration of the inputs and all related processes at the cellular and inter-cellular level 

are fascinating. They are however not directly related to the content of this work. One of 

the best publications on the subject is the book by Shepard f 32 J.

Lateral organization

The cortical hem ispheres

The cerebrum is a major mass of the brain composed of many milions of nerve fibers and 

covered with the cerebral cortex. The cerebrum consists of two hemispheres, as shown in 

Figure H, divided by the medial longitudal fissure1. The hemispheres are connected by 

the corpus callosum, a tract of many nerve fibers that are used to exchange information 

between both halves of the cerebrum. The low level functionality of the hemispheres is 

similar, but they control opposite sides o f the body: the left hemisphere controls the right

* Fissure - a cleft in the surface o f the cortex that is deep enough to indent the brain ventricles. 
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side of the body, and vice versa. That arrangement is as surprising now as it was for 

Erasistratus. Ramon a Cayal (27) attempts to explain that phenomenon by the need for 

maintaining continuity of the visual image created in the brain from the signals sent by 

the sensors in the retinas Cogbi!! (bj suggest that this anatomical arrangement developed 

in the primitive vertebrates (he studied Amolystomai that used a coil as their basic 

movement. The sensory neurons on one side of the body excite the motor neurons on the 

other side, so the animal can move away from any noxious stimulus. The olfactory bulbs 

are not crossed, the only such system in the brain, because the animal wants to move in 

the direction of the food that it smells. There are other hypothetical explanations, but the 

issue is far from being settled, though.

Psychologists believe that the hemispheres differ in the high level functionality that they 

provide. Although it may vary from one individual to another, usually the left 

hemisphere is a logical brain. The processing of information in the left hemisphere has a 

symbolic nature. Given a set of clues, the brain follows the logical paths that ultimately 

lead to the solution of the problem. On the contrary, the right hemisphere i-» an artistic 

brain that uses images rather than symbols. The processing of information in the right 

hemisphere has a global, associative nature. The sensations that are delivered to the right
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hemisphere are correlated, resulting in a recognition of shapes, colors, sounds, etc. The 

right hemisphere, however, has to contact the left side of the brain to attach proper 

symbolic labels to the recognized objects. The same happens in the opposite direction. If 

there is no obvious logical pattern to the resolution of the problem, the right hemisphere 

might be helpful by associating facts or sensations that are not linked by any logical 

reasoning.

The cortical lobes

Each of the two hemispheres of the cortex is divided into four2 anatomical regions called 

lobes that are illustrated in Figure 9, Although these are anatomically defined areas, they 

are often used in conjunction with the functionality observed in the specific area. That is 

however far from being accurate. Much better reflection of the functionality of various 

regions of the cortex are the topographic maps described in further sections. The lobes 

are, however, convenient orientation terms that are used commonly by neuroscientists

- v_

Figure 9. The cerebral lobes.

2Sometime anatomists count the liinbic system as another lobe, bringing the number of lobes to five.
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Laminar organization - The cortical layers

Neuroscientists divide the cortex into six layers, depending on how the neurons are 

arranged. Despite such a generalization, there are some variations in the anatomy of 

different parts o f the cortex. In some areas of the brain certain layers might be thinner, 

almost non-existent, while others are thicker than average. Some researchers argue that 

there are more layers than six, and actually in the literature there are letters added to the 

layer numbers, like IVa. Illb. etc.. to indicate sub-layers.

There are certain functional attributes that can be associated with the cortical layers. For 

example, layer IV receives signals from afferents’ coming mostly from the thalamus or 

olfactory system, and is therefore considered to be an input layer. This layer is very thick 

in primary sensory areas (see topographical maps below) and very thin in the motor 

regions of the brain. The layers below layer IV, send efferents4 to the low'er brain 

structures and are considered to be the output layers. That functionality explains why 

they are thick in the motor areas: the signals that are generated there must be carried to 

motor neurons that ultimately will cause contraction of muscles. The layers above layer 

IV make connections mostly with other cortical areas.

’The tracts dial bring signals from somewhere else.

4The tracts that carry signals to other locations.
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Figure 10. Cortical layers.

The detailed description of those interactions will be presented in Chapter 2.

Topography  o f  the cerebral  cortex

Since the times of Gall and his phrenology theory5, many scientists performed extensive 

studies of various aspects of the cortex trying to divide it into more or less meaningful 

regions. In the course of those explorations, studies of the brain were published that 

described various characteristics of the cerebral cortex. There are three topographical 

maps of the brain that are widely used in the field today: functional, projection and 

cytoarchitectonic maps. Although the maps are based on different research methods used, 

the areas that were defined are quite similar. That seems to prove that there is a close 

relationship between the anatomy, connectivity and functionality o f the brain areas.

^In short, phrenology was a theory that certain physical characteristics o f the skull (like bumps) and 
indirectly the brain, can be the basis for assigning functions to the regions o f  the brain. Although today 
that theory sounds amusing, it was the first attempt to create a functional map o f the brain, an endeavor 
that was attempted by many scientists later on.
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Cytoarchitectonfc maps

Cytoarchitectonic maps are constructed by examining the cells in every region of the 

cortex. Their type, density, arrangement, etc.. is taken into account. The map that is used 

most often was created by Broadmann at the beginning of this century and one of its 

versions is shown in Figure 11. Broadmann examined various parts of the cortex without 

any overall plan, so the numbers that he assigned to the areas are a little chaotic. The 

numbers are used very widely to describe the location of a function realized by the 

specific part of the brain. For example, area 17 is commonly used as a reference to the 

primary visual cortex, while area 41 is a reference to the primary auditory cortex (see 

next section).

46

47

Figure 11. Cytoarchitectonic map of the brain.

Projection maps

Projections maps are created by tracing the efferents that leave the cortex and make 

connections with various subsystems in the lower structures of the brain and by looking 

for the source of the afferents carrying signals to the cortex. It has been noted that for
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each type of sense, there is an area in the cortex that receives most o f the sensation 

signals carried by the axons of the ne urons in the sensory system. Those areas are called 

primary sensory areas. The neurons from those areas send axons to secondary areas and 

from there to tertiary areas. That regularity led to the hypothesis that information 

processing in the cortex is hierarchical. Now, however, there is a clear evidence, that 

although there are obviously hierarchies in the processing of sensory data, there are also 

many additional pathways that contribute to the parallel nature o f the overall 

functionality of the brain. Figure 12 illustrates the main projection maps and the 

pathways between the primary, secondary and tertiary areas. The primary areas are black 

and the secondary areas are gray. The arrows from or to the secondary areas indicate the 

tertiary regions. It is worth noting, that while primary areas are highly uniform in the 

character o f the incoming signals, the other areas are more and more inclined to process 

signals with diversified origins. They are called associative areas (particularly the tertiary 

areas), since they correlate signals from many sources.

Functional maps

The functional maps are drawn taking into account the data obtained by one or more of 

the following experimental techniques:
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• stimulating cortex areas and registering what behavior is induced,

• stimulating cortex areas and registering what sensations are reported by the subjects,

• recording the activity of the cortex while performing certain behavioral tasks, or

• observ ing the changes in the behavior after cortical damage.

Some neuroscientists use animal lobotomy to register changes in the animal behavior. 

That technique can hardly be classified as scientific, since it is as cruel as the experiments 

of Erasistratus.

The best known functional map of the cortex is the one prepared by Penfield [24] and his 

coworkers at the Montreal Neurological Institute. They were created by examining 

cortices of patients awaiting brain surgery under local anesthetic. They noticed that each 

part of the body responds to a stimulus applied to a specific location of the cortex. What 

is more, the topology of the body is preserved in that mapping, although relative 

proportions of the areas corresponding to various pans of the body disagree with the 

differences between their actual physical sizes. For example, there is a relatively large 

area of the cortex devoted to hands and fingers as compared to the area controlling the 

trunk. That is easy to explain. There is much higher degree of precision required from the 

hands and fingers than from the torso, so more resources must be devoted to command 

hands.
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Figure 13. Homunculi - functional maps of the somatosensory and motor areas of the

brain.

Similar mapping of the body parts has been discovered by recording the sensations that 

were reported by the subjects upon a stimulus being applied to the cortex. The areas of 

the first mapping (stimuli => movement) are localized in the anterior6  part of the parietal 

lobe more or less along the postcentral gyrus7. The areas of the second mapping (stimuli 

=* somatic sensation) are located in the posterior* part of the frontal lobe, along the 

precentral gyrus.

Figure 13 shows a popular illustration of Penfield’s observations in a form of homunculi, 

little men, that are more or less symmetrical with respect to the central sulcus9. That 

symmetry is as important to the control of movement as the topology preserving nature 

of the mappings. Both areas, motor and somatosensory areas, exchange information 

during voluntary movements, so the part controlling the movement (motor areas) is

6=frontal

7Gyrus - a ridge on the surface o f  the cortex.

*=back

^Sulcus - a cleft in the surface o f the cortex that is shallower than a fissure. 
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aware of the progress in the movement (as reported by the sensors sending signals to the 

somatosensory areas).

The region of the cortex responsible for speed.' has been discovered in the previous 

century by Broca (6 J. That area is today called by his name. The low level speech 

understanding was discovered by Wernicke [34] and is as well called by the name of the 

scientist. Those areas are located in the medial10 superior11 part o f the temporal lobe 

(Broadmann area 41, 42). The occipital lobe is the part of the brain were visual 

information processing takes place (Broadmann area 17, 18. 19). That function was 

assigned for the first time by Holmes [ 13] who was treating soldiers with head injuries in 

the WW1 and noticed that injuries to different parts of the occipital lobe cause blindness 

in different parts of the eye.

G eneral function o f  the cortex

The functionality of the cortex is still not well researched. However, the following three 

types of computation that the cortex performs, comprises most of the cortex functions:

• control of voluntary movements,

• pattern perception,

• cognitive mapping.

1 '=U>p
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Control of voluntary movements

The cortex receives the sensory signals from the thalamic afferents. That information is 

the basis for determining the responses to the observed state of the environment. Any 

complex action that is a part of that response is planned in the cortex. Every item is the 

sequence, the schedule of the response, is sent to the lower brain structures for execution. 

The functionality of some of those underlying structures was discussed briefly earlier in 

this chapter. The cycle repeats itself when the sensors notice the change caused by the 

response, and again report that state to the cortex. Through that feedback, the cortex 

ensures that not only a proper action is undertaken, but also that it is carried out 

accurately.

In tests on animals with the cortex removed, the ability to generate movements, as 

complex as walking, eating, drinking, mating, is not lost. However, they are not able to 

perform any of those movements as a part of an overall goal. They may carry food, but 

they will not hoard it. They may perform some elements of grooming, but they do not 

really groom.

Pattern perception

The sensory system is bombarded with a variety of bits and pieces of information about 

the environment. That information is correlated in the cortex. The cortex is the place 

where the nature of the observed changes is comprehended. Without that comprehension 

it would not be possible to react properly to the incoming data, since the same singular 

symptom can be a part of many, sometime quite different, syndromes.

Animals without the cortex recognize distinct signals like place and intensity of light, but 

are not able to differentiate between the patterns that use those signals.
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Cognitive mapping

The question about the localization of the memory has not been answered yet. The fact is 

that many things can be learned without the cortex. However, the cortex provides an 

additional functionality. Cognitive maps that are constructed in the cortex during 

learning, can be used later to perform actions that were not learned.

Decorticated animals perform as well or almost as well as healthy ones on tasks like 

classical conditioning, approach learning, cue learning, etc. However, they are not able to 

learn dependencies that are distant, and not a part o f the learned sequence. If a healthy rat 

learns to run from the south side of a maze to the north side, it will reach the north side 

even if  positioned in the west. Clearly, it had built a map during the learning that it uses 

later on. That map is located in the cortex, since that ability is absent in rats without the 

cortex, although they can learn the path from the south side to the north side.

Cognitive maps are constructed very fast. Sometimes it takes only one or two trials. The 

speed suggests that built-in neural connections are utilized.

Functional organization of the cortex - Luria's model

There has been a lot o f evidence collected since the nineteenth century that the posterior 

cortex receives signals from the sensory systems and is generally more concerned with 

the sensory function than the anterior cortex. It has also been proved through various 

experiments and observations of humans with cortex lesions, that the anterior cortex is 

responsible for the motor system, and much less responsible for sensory processing. The 

interactions with the sensory systems are rather indirect through the modulating influence 

that is procured by the cortex efferents connecting with the thalamus and other sub- 

cortical structures. A hierarchical model of the cortex function has been built that 

involves three types o f the cortical areas:
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1. Primary areas, sensory and motor.

2. Secondary areas, sensory and motor.

3. Tertiary areas that are called associative.

Many researchers proposed theories based on this basic, hierarchical model. Lima's 

model seems to be a good example. Although it has been proved since then that a purely 

hierarchical theory of the cortex function is incorrect. Lurias model is a good top level 

description of the processes and pathways that constitute overall cortex functionality.

In Luria’s model, the cortex is divided into two basic parts with respect to the performed 

functionality. The posterior part, that includes the occipital, parietal and temporal lobes is 

the sensory unit. The anterior part of the cortex is the motor unit. It comprises only one 

lobe: the frontal one.

Figure 14 illustrates the sensory cortex with sub-regions representing the primary', 

secondary and tertiary sensory units (graded shadowing). The signals from the thalamus 

arrive to the primary areas (most dark) where they are analyzed with respect to their 

location, intensity and patterns of activation. To properly fulfill that task, the primary 

cortices are organized in arrays or maps representing those characteristics. The 

homunculus that was presented earlier is an example of such a map in the somatosensory 

area. The results of the primary analysis are transmitted to the secondary sensory areas 

(medium gray) where sensation is consolidated, but still retains its modality. The 

integration of various types of sensations occurs in the tertiary, associative, areas (white). 

Luria believed that the sensations are assigned their symbolic meanings in those areas 

and. consequently, is the area where the abstract thinking starts.
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Figure 14. Luna's model - The sensory cortex.

The motor o r tex  is illustrated in Figure 15. The direction in which the signals are passed 

from one area to another are reversed here; i.e.. the tertiary area sends efferents to the 

secondary area and the secondary area, in turn, sends the signals to the primary area. The 

tertiary motor area is the highest level structure in the brain. It is the area in which where 

intentions are created. Those intentions are translated into complex behavioral patterns 

that are divided into singular actions in the secondary* areas (pre-motor cortex). The 

primary motor cortex has an organization similar to the primary sensory cortex. It 

similarlycontains topographical maps (like that illustrated by the motor homunculus). 

Those maps are used to direct the actions into the proper locations with the proper 

intensity.

Figure 15. Luna s model - The motor cortex.
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The problem with the Luria's model is not that it is wrong, but rather that it is not 

complete. As new research techniques and tools were designed, more and more data was 

discovered that contradicted the pure hierarchical model. There are many cortical 

connections that do not fail into any hierarchical pathways. That mixture of the 

traditional hierarchical view and new parallel extensions to that model underline the 

complexity of the function performed by the cortex.

There have been many books written about the brain that include descriptions of the 

cortex. Some of them are listed in the bibliography; e.g.. 116|. |30 | and | IX). The reader 

seeking more details is referred to one of them.
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CHAPTER 2 

The cortical column

In Chapter I. the laminar organization of the cortex was presented. This organization is 

based on the types of neurons that can be found in the cortex and their arrangement. The 

same criterion was used by Broadmann to divide the cortex into many distinct regions. In 

this chapter, a closer look at the cytoarchitectonic structure of the cortex is taken. The 

researchers discovered that although various areas of the cortex can be distinguished, 

there is a certain characteristic micro-arrangement of a number of neurons that is 

common to all of them. That arrangement is called the cortical column. In the course of 

many experiments, it became obvious that the cortical column constitutes a second 

fundamental level1: information processing unit. The architecture, behavior and 

computing capabilities of the cortical column ar*d a network of cortical columns are 

discussed in this chapter.

Ty pe s  o f  neu ro ns in the cortex

’siany types of neurons have been found in the cortex. Some of them are included in the 

illustration in Figure lb. The most characteristic ones are pyramidal cells, easy to

' -A  neuron o  f i e  1 ir^t level orjiani/alnm;'! ami.
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recognize by, and called after, the pyramidal shape of their somas. Other neurons are 

more difficult to classify, and they are often referred to by several common terms: 

stellate cells, interneurons, non-pyramidal cells. They might be bipolar, multipolar or 

bitufted with respect to the shape of the tree of their dendrites. According to the 

concentration of spines on its dendrites, an interneuron may be spiny or smooth. Usually, 

interneurons do not send axons outside the area in which their body is located. Many of 

the interneurons have been given names after the shape of their dendritic or axonal trees.

The pyramidal and non-pyramidal neurons will be described in greater detail in tne 

following few' sections.

Pyramidal neurons

Pyramidal neurons usually have their somas in layers 2 and 3 or 5 and 6. Characteristic 

for a pyramidal cell is not only its soma, but also its apical1; dendrite. The apical dendrite 

usually crosses several cortical layers. That design gives the pyramidal neuron the 

capability to integrate a variety of inputs specific to different cortical layers. The cells 

that have their somas in layers 2 and 3 have shorter apical dendrites than the cells with 

their somas in layers 5 and 6. Both types of pyramidal neurons, supragrunular - those 

with their somas above the layer 4 that is called granular - and infragranular - w ith somas 

in the layers 5 or 6 - receive only excitatory synapses. The main sources of input signals 

to pyramidal neurons are afferents incoming from other neural structures or other cortical 

areas. The signals can be transmitted directly by synapses with the afferents or axons on 

the somas and dendri'es of the pyramidal cells or indirectly through other cortical 

neurons.

1 ’That is oriented perpendicularly to the surface of the cortex. 
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Figure lb. The most important cortical neurons.

It has been demonstrated that the axons of pyramidal neurons constitute the main output 

of the cortex. Using various tracing techniques many researchers found that the axons of 

the infragranular pyramidal cells usually project to other, lower, neural structures. They 

carry activation signals for actions that are carried out by the appropriate subsystem. For 

example, they can activate a movement by sending signals to the basal ganglia or even 

further to the spinal cord. The supragranular pyramidal neurons have been found to send 

their axons usually to proximal'4 or distal1' pyramidal neurons in the cortex. Those axons 

constitute main cortical pathways that distribute activation throughout various areas of 

the cortex in order to integrate and correlate different aspects of the perceived
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phenomenon. That columnar activity is internal to the cortex and represents abstract 

thinking, i.e., reasoning without the involvement of any physical resources.

The cortex grows starting with the lower layers, so it may explain why the pyramidal 

cells in the lower layers fulfill more basic functions providing control for the lower level 

subsystems. When the higher layers are added to the cortex, the extra resources can be 

used on more sophisticated functionality. That is why the supragranular pyramidal 

neurons can migrate toward other cortical regions creating in that way framework for 

thinking.

Spiny-stellate neurons

It has been demonstrated through tracing experiments that layer 4 of the cortex is the 

location where the most of the thalamic efferents terminates. Layer 4, a layer that is said 

to be granular because of the high density of various interneurons, is commonly 

considered to b< the input layer of the cortex. That layer is very thick in the primary 

sensory areas and very thin in other regions that do not have direct input from the 

thalamus.

Spiny stellate cells (cell labeled Sj in Figure 16) are found exclusively in the middle 

layers (mostly in layer 4) of the cortex. Many neuroscientists believe that they are. 

together with the pyramidal neurons, the main targets of thalamic signals. Spiny stellate 

cells, however, span their dendritic trees locally with respect to me laminae and the 

cortical area. The axons of spiny stellate neurons have similar, local, ramification, but m 

addition to layer 4 they may project to adjacent layers 3 or 5. Due to the property of 

limited localization, spiny stellate intemeurons are not integrating units.
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Spiny stellate cells have excitatory nature. They project to the somas or apical dendrites 

of pyramidal neurons and other interneurons. This organization is conducive to 

processing input data.

Cortico-cortical tracts may also terminate in layer 4. The term "input", therefore, includes 

both types of input: external - thalamic - and internal -cortical.

Chandelier neurons

A chandelier neuron, whose dense pattern of axonal ramifications resembles candles of a 

chandelier, is mostly found in layers 2 or 5. The cells with their somas in layer 5 send 

their axons up. and vice versa, the cells with their somas in the supragranular layers send 

their axons down.

The behavior of chandelier cells is inhibitory. They synapse with other neurons, mostly 

pyramidal and spiny stellate, usually in the vicinity of the initial segment of the output 

axon. For that reason, they are thought to be gating the output from the post-synaptic 

neuron.

Chandelier neurons can be found mostly in sensory areas.

Basket neurons

Basket interneurons (cell labeled S2 , in Figure 16) are so called because they have 

axons shaped in the form of a basket around the cell bodies and proximal dendrites 

belonging to pyramidal cells. Their somas are usually in layers 3 and 5. They project 

horizontally, but also cross several layers before they reach the destination. Basket cells 

receive signals from collateral axons of pyramidal cells.
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Basket cells exhibit an inhibitory behavior. They may, therefore, suppress the activity in 

pyramidal neurons in the neighborhood while the activity in the region is high. Such 

behavior enhances the contrast between neighboring groups of cells.

The density of basket neurons is relatively high in the motor areas of the cortex.

Double bouquet neurons

The somas of double bouquet interneurons (ceil labeled S5 in Figure 16) are found 

mostly in supragranular or granular layers. Their axons form dense vertical branches 

directed down and up. That gave them their name - the axonal branches look like 

bouquets.

Double bouquet neurons are inhibitory, but because the preferred targets of their axons 

are other inhibitory cells, their overall role is dis-inhibitory. Their role might be a 

modulation of cortical activity across the layers.

Bipolar neurons

Bipolar cells are similar to double bouquet neurons, because of the dendritic and axonal 

trees that have as well preferential vertical orientation. They receive signals from 

supragranular pyramidal cells.

Bipolar neurons are excitatory. Hence, their task might be to move high activation from 

the supragranular layers to the infragranular ones.

Smooth stellate neurons

Smooth stellate neurons are inhibitory. Their somas have been detected in many layers of 

the cortex, but mainly in layer 4. These interneurons are multipolar and often are called
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short axon or local circuit cells, because they usually project to the same or neighboring 

cortical layers.

Smooth stellate neurons are considered a general processing elements, because they 

synapse with wide variety of other neurons. They can connect to somas, dendrites, spines 

and axons of pyramidal and non-pyramidal cells.

The cortical column

In the course of their experiments, neuroscientists noticed that reaction to a stimulus is 

highly localized in the cortex. They observed that the response to a sensory input is 

independent of the depth of the placement of the electrodes that detect and measure the 

activity of the cortex. Slight differences in the promptness of the response have been 

observed. When the electrode is placed in the granular layer 4, there is the shortest delay 

between the stimulus and the response. That is in agreement with the earlier observations 

that layer 4 is the main input of the cortex. Efferents connect directly to the somas and 

dendrites of the receiving cells. The supragranular layers get activated next. There are 

fewer direct connections between afferents and the cells in those layers, so the activity is 

carried over the interneurons. The additional synapses that are required are the reason for 

the delay. The infragranular layers are activated last. One reason is that they have only 

their apical dendrites in the proximity of the afferents, while the supragranular cells have 

their somas and basal dendrites closer to the terminals of the axons of the input tracts 

with their large surfaces more inclined to make connections. Additionally, spiny stellate 

cells have their axons usually projecting upward, and that favors the upper cells as the 

targets of the propagation of the activity. The fact that the infragranular layers are 

activated last in the cortex, underlines their role as the output zones. Axons of the 

pyramidal cells carry the integrated signals to other regions of the cortex or to other 

neural structures.
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Another important observation is that if the electrode is moved a little bit, it detects 

activation that is the response to possibly completely different stimulus. It has been 

proved that neighboring groups of neurons that span the area of the cortex with a 

diameter of 0.5 to 1.0 mm respond best to different stimulus. Little activity is spread 

laterally, i.e., high activity in one mini-circuit does not cause a change in the activity of 

its neighbors.

These findings suggested that there is a functional unit that is vertically oriented crossing 

all conical layers. Szentagothai was the first to put forward that idea. He called the mini

circuit of interconnected cortical neurons that respond in a uniform way to a stimulus a 

cortical column. Since then, there have been many followers, and currently the existence 

of a functional unit that retained the name given it by Szentagothai (311 is a commonly 

approved fact.

In Chapter 1, the topology preserving 'tapping that occurs in the cortex was described. 

The columns are an integral part of that phenomenon. The columns of a specific ree :;.n 

responsive to a particular sensation may represent different aspects of the perception. For 

example, there is a region in the somatosensory cortex responsive to stimuli applied to a 

hand. The columns in that region are activated by the sensory information coming from 

sensors of various types. There are columns that respond to tactile data, temperature, 

position of the joints, etc. Such distant sensations do not fit very well with the isomorphic- 

mapping scheme that represents whole body as one image in the cortex. However, recent 

studies show that there are many representations of the body. Some projections can be 

repeated many times in various regions, implying that the particular sensation space that 

they map is a component u  many more complex perception spaces. Such a two-tier 

organization can be explained by the need to represent a multidimensional world on a 

two-dimensional plane, the cortex. There have been, unfortunately, only a few areas in 

which spaces of the first and second level indices are clearly defined.
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Figure 17. Two-tier organization of the topology preserving maps in the cortex.

Figure 17 illustrates the two-tier organization of the above topology preserving maps 

(after Ballard |4 |). Two regions with the first level index spaces A and B contain several 

regions with the second level index spaces. Some of those sub-regions, namely V and Z, 

are repeated in A and B. This implies that v sensation that can be indexed by Y is a 

component of two different compound perceptions. As illustrated by A in the figure, an 

entity that maps to a higher tier in one location may be mapped to a lower lever tier in 

another region. From the perspective of this thesis, there are two important things worth 

noting:

• there are uniform functional units -cortical columns - in the cortex and

• a functional map. in fact a network of a number of interconnected columns, may be 

used for various purposes.

The composition of cortical columns in various parts o f the cortex, particularly between 

its motor and sensory parts, might differ. There are, however, enough similarities that 

allow the degree of generalization that has been presented in here.

Connectivity o f  the cortical column

The role of the basket cells enhancing the contrast between neighboring columns through 

inhibitory connections with pyramidal cells belonging to other columns was described
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before. That aspect of the connectivity pattern of the cortical column is a vital part of the 

capability o f the cortex to self-organize itself into feature maps.

The remaining patterns of connectivity o f a column with more distal entities are 

summarized in Figure IS. The Figure shows a cross-section of the cortex with images that 

are generated by three types of staining, i.e., marking the elements o f the cortex so they 

can be photographed. There are some differences in the connectivity of the cortical 

columns in the motor and sensory areas that are disregarded here. The same degree of 

generalization is made as it was done with the cortical column itself.

The afferents arriving to a cortical column usually have their terminals in layer 4. The 

medial section of the cortical column is, therefore, considered to be an input interface. 

There are two sources of input signals incoming to the interface: cortical - from other 

regions of the cortex, and thalamic - from the thalamus. The cortico-cortical afferents can 

interconnect proximal or distal areas of the cortex. They include connections between the 

two hemispheres of the brain, called callosal afferents.

t ♦ ♦ * t *
We n Syewfic CoHmbI uurtioel TWMenMc

Figure IS. Types of efferents and afferents of a cortical column by layer. 
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The activity is distributed across the whole column through the internal interneuron 

connections. The activity is easily transmitted to the supragranular pyramidal neurons in 

the upper part of the column because of the favorable location of their somas and the 

dendritic trees. Higher levels of input activity are required to excite the infragranular 

pyramidal neurons in the lower part of the column.

It is important to indicate that the input activity of a column is a sum of the cortico- 

cortical and thalamo-cortical afferents. Gjnsequently, the activity of a column depends 

on the sensations induced by the external stimuli as well as on the internal processes 

occurring in the cortex.

The pyramidal neurons were described as the output cells of the cortex. They fulfill the 

same role with respect to the cortical column to which they belong. Generally, the 

distance to which a pyramidal cell projects depends on the laminar position of its soma in 

the cortex. The deeper the soma is located, the further the axon transmits the neuron's 

activity. That arrangement can be explained by analyzing the ontogeny of the brain and 

the cortex. The growth of the cortex begins with the lower layers and the neurons in 

those layers are used to accomplish the most basic functionality. That requires long 

distance connections that can reach as far as the spinal cord. The level of the 

functionality that is still unrealized increases when the higher layers of the cortex start to 

develop. The more complex the functionality provided by a specific neural system is. the 

closer to the cortex that subsystem is located and, as a consequence, the shorter the length 

of the efferents. Finally, connections between cortical areas are sprouted from the higher 

cortical layers.

Hence, a cortical column has two output interfaces:

• cortico-cortical efferents, realized by the axons of the supragranular pyramidal 

neurons in the higher section of the column and
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• cortico-sub-cortical efferents, realized by the axons of the infragranular pyramidal 

cells in the lower sections of the column.

The cortico-cortical connections are considered to be the basis for the higher level 

functionality that is usually associated with abstract thinking and problem solving. 

Spreading activity across the cortex can be considered an attempt to correlate 

asynchronous input data with the information stored in the long term memory. If the 

activity is low, it might be sufficient to activate only the supragranular pyramidal 

neurons of the receiving column, so the information is processed without any external 

output.

The cortico-sub-cortical efferents carry the signals that represents commands to be 

executed by the lower level neural subsystems. There are. for example, axons that 

terminate in the basal ganglia or the spinal cord and the signals carried over those 

connections trigger more or less complex motor actions. The level of excitation of the 

infragranular pyramidal neurons represent an overall state of the column, because of their 

integrating characteristic described before.

The cortico-sub-cortical efferents include also the cortico-thalamic efferents that are used 

to modulate the sensory data that are being transmitted via the thalamo-cortical afferents 

to the cortex. The cortex may control the level of the input activity by enhancing the 

sensitivity to the sensations that are being considered important or suppressing the signals 

that are regarded to be a noise.

The  cortical column a s  a  pro cessin g  element

The cortical column is an elementary information processing unit of the cerebral cortex. 

It receives an input that comes to the granular layer and is distributed vertically across 

the column: first to the supragranular, later to the infragranular layer. The level of the
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input activity that is required to activate the upper pyramidal neurons is lower than the 

level required to activate the infragranular cells. The activity in the higher sections of the 

column represents a concept or feature with which the column is associated. When the 

pyramidal cells in layers 2 or 3 are activated, they can excite other columns, also with 

some well defined representation, via the cortico-cortical efferents. In that way, various 

features, concepts, aspects of the sensation, etc., can be correlated. If several columns 

projects to the same column, the integrated input activity might be sufficient to not only 

activate the upper pyramidal neurons, but also the lower pyramidal cells. That might 

trigger an external action that will, in turn, change the overall pattern of activity in the 

cortex through the feedback mechanism.

The following three states of a cortical column can be defined on the basis of the 

observ ations presented so far:

• no. or very low', activity, suggesting that the feature or concept associated with the 

column has neither been detected by the sensors nor recalled from the memory 

(definitive NO).

• activity only in the higher sections of the column, suggesting that the feature or 

concept has been recalled from memory due to some internal processes (MAYBE), 

and

• activity in the whole column, suggesting that the feature or concept has been 

confirmed as present in the current context (definitive YES).

In each of those states, the column may receive input signals from other cortical regions 

or the thalamus. The columnar output is completely passive in the NO state. While in the 

MAYBE state, the column sends signals only through its cortico-cortical efferents, 

because the activity is too low in the lower section of the column. The YES state results

.Vi huol o f  C om puter St tent e. C arleton U niversity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

NeurosvlvcjL-ANairalNamrk Based an a Cm iuil Column. Master .Thesis. Aniir,:cj tties:i:ad id

in the firing of the infragranular pyramidal neurons. In addition to the possibility of 

inducing an external action, high activity in the lower layers may activate inhibitory 

interneurons that suppress the activity in the column. If a partial activation of a column is 

considered as an anticipation of the presence of a feature or concept, or as a goal, the 

phenomenon that shuts down the activity in the column after the column is completely 

activated can be treated as a neural implementation of goal satisfaction.

P r o p e r t ie s  o f  a  n e t w o r k  o f  c o r t ic a l  c o l u m n s

The cortical columns through their efferents and afferents constitute a network of 

interconnected processing units. Some of the properties of the cortex were described in 

Chapter 1. Those pioperties were related to the capability of the cortex to organize into 

topographical maps. The maps in the sensory cortex reflect the physical world as 

perceived by the human sensors and communicated to the cortex via the thalamo-cortical 

connections. On other hand, the maps that are created in the motor cortex are organized 

according to the layout of the body parts that they control. The motor cortex includes the 

frontal areas that are considered to be the location of the cortex u here the most abstract 

processing occurs. There are less efferents leaving the cortex from those areas -  most of 

them terminate somewhere else in the cortex, possibly closer to the regions directly 

controlling the motor neurons.

The capability to generate feature maps comes from the competitive nature of lateral 

interconnections between columns that was described earlier. It is a very interesting 

aspect of the overall functionality of the cortex, that has been studied by many 

researchers. There have been several artificial networks implemented, for example 

Kohonen's network, that behave in a similar way. i.e.. where local specialization 

develops when sample data is fed into the network. Ultimately, certain features or 

concepts will activate a single unit or a well defined set of units. The relationships
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between the im ago in the network as represented by the patterns of the connectivity are a 

reflection of the relationships in the training sample data. There is a strong evidence that 

the same process occurs in the cortex.

From the perspective of this work, other capabilities of a network of cortical units are 

more interesting. It has been suggested in the previous section, that a lightly activated 

(i.e.. only the pyramidal neurons in the upper sections of the column are active) column 

can represent an anticipation of a certain feature or concept. That is equivalent to saying 

that the column represents a certain goal. If the anticipation is satisfied, a conclusion is 

that the goal has been reached. The initial anticipation probably is the result of a desire or 

need born somewhere else in the brain. The limbic system may translate such needs into 

signals that are carried over the cortex afferents to proper columns. Many columns are 

probably involved in such a complex task. Each of the involved columns represents a 

sub-goal that must be satisfied to satisfy the global goal. The activity that represents a 

sub-goal, that from the local perspective is just another goal, is spread across the cortex 

through the cortico-cortical efferents. None of the receiving columns get highly 

activated, unless they are also anticipating or getting external inputs from the sensors. In 

such a case, the anticipation of the receiving columns is fulfilled, i.e., the goal is 

satisfied. and the columns are shut down by the inhibitor)' interaction between the lower 

and upper layers.

Although that is only a hypothesis, there is some research data that seem to support the 

described behavior, it has been demonstrated, that before a hand can be moved, for 

example, to a certain desired position, the column in the sensory cortex that represents 

the hand in that position is activated slightly before the actual movement takes place. The 

hand is in another position at that time, so the activity cannot be caused by a sensation. It 

seems that the cortex i s  presented with the goal that is personitied by the activity in the 

column. The activity that s p r e a d s  throughout the cortex finally reaches the column that
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represents the current position of the hand. Because the hand is actually in that position, 

the sensors send signals to the column's input. The result is that column now becomes 

highly activated. That activity can easily be transmitted to the primary motor cortex that 

is more or less symmetrical, with respect to the topographical maps, to the 

somato-sensory cortex. That may trigger a motor action that will move the hand into 

another position that is closer to ihe goal position. The next sensory column once again 

gets two inputs: one from the sensors and another from the anticipating column, so the 

same process occurs. Finally, the hand is guided to the desired position, so the first 

column in the chain gets highly activated and shuts down. The goal has been achieved. 

The hand is in the desired position.

The process of moving a hand has been dramatically simplified here to illustrate the 

capability of the cortex to perform searches. The search trees in the cortex might be very 

complex with many branches at many levels. The basic mechanism however seems to be 

the same at every point.

There are certain activities that are being performed routinely, without any dose of 

uncertainty. That may be due to that fact, that certain cortical paths are repeated many 

times, so the influence of certain columns on others becomes so strong that the activity is 

transmitted without any loss of its intensity between the columns. Therefore, if a column 

get activated with a sensory' input, it may activate the one that is tightly coupled even if 

the other cell is not is the anticipating state. If that happens in the somato-sensory cortex, 

the activity can be transmitted to the motor cortex and the movements can be generated 

as described earlier.

In the next parts of this work, the observations made in this and the preceding chapters 

will be the basis for the attempts to build a model of the cortical column. A network of
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such model processing units has characteristics like and exhibits behavior similar to 

biological cortical networks.
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CHAPTER 3 

A model of the cortical column

O v er v iew

For years, scientists have been looking at the brain as a prototype for computing 

machines. In some way, the classical von Neuman architecture is the result of yet another 

attempt -  and a very successful one! There have been many others trying to duplicate the 

elegance with which the nature solved the computational needs of new generations of 

mutants in the never ending process of evolution. A new multidisciplinary area of science 

has been founded that encompasses the research related to reverse engineering of the 

brain. It appears that it is not that easy to imitate the simplicity and, at the same time, the 

complexity that is so integral to the human brain. There are many fascinating 

publications describing the theory and applications of neural networks and the reader in 

encouraged to refer to such material for the details. This work is this author's endeavor to 

mimic Nature.

A biological cortical column that has been presented in Chapter 2 is proposed in here as a 

prototype for an artificial information processing element. On one hand, the column is 

the smallest entity in the cortex that can represent abstract data. On the other hand, it is 

the largest cortical object that has been relatively well researched and can be describeo in
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terms of facts and not hypotheses. In the opinion of this author, a neuron, that is usually 

modeled in neural networks, is too simple to be used to process higher levels of 

information. In turn, groups of neurons, cell assemblies, that represent abstract 

information in a distributed way are hard to manage. The cortical column seems to be a 

tempting choice for a building block for neural networks whose purpose is to process 

abstract data. The column is positioned in this work in the role similar to electronic logic 

gates that can be used to process complex information at relatively abstract levels.

This model is based on the model proposed by Burnod |7 |. However. in addition to some 

unique features of the model of the cortical column presented in this thesis, notably the 

learning schema, the main emphasis is laid on the computational capabilities of a 

netw ork of interconnected columns. To continue the analogy with electronic devices, the 

netw ork of artificial columns could be compared to an EPROM chip that can I c loaded 

with any specific data and used as a module in more or less complex combinations of 

.hips. The generality, or in other words universality, and modularity of the network were 

the main assertions in the design of the model of the column as well as the network.

There is a more detailed comparison of the model presented in this work and Burnod's 

model in the last section of this chapter. The computational networks that utilize both 

models will be compared in the next chapter.

In the description of the biological cortical column a special emphasis was put on the 

features that are used in the model presented in this chapter. The details of inter-neural 

connectivity are dropped in favor of generalized relationships. The inhibitory 

interconnections within a neighborhood of a column are ignored as well. Lateral 

inhibition is required to build discriminatory maps. Such a process can be achieved with 

other networks (for example Kohonen (1X|). Therefore in this work, an assumption is 

made that the nodes of the network do have specific meaning or features or concepts
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associated with them. That could be accomplished by training a feature extraction and 

topology preserving network and clamping the outputs of the nodes that generalize 

specific features onto the network of columns as illustrated in Figure 19.
Sensory data

Kohonen network

Feature map

Cottica! network

Figure 19. Preprocessing input data using a Kohonen netw ork.

The network of artificial columns is called neurosolver, because it is capable of 

performing searches in the space of all possible states of the network activity. The 

problems are presented as points in that space in the form of an increased activity in a 

node or a set of nodes that represent a goal, i.e., the desired end state. The network solves 

the problem by subsequently firing, i.e., activating at the high level, all sets of the nodes 

that constitute the solution path. It is the path from the current state (a set of premises) to 

the goal. That capability will be discussed in detail in the next chapter.

A r c h it e c t u r e  o f  a n  a r tific ia l  c o l u m n

In Chapter 2, while presenting the anatomy of the biological cortical column, two distinct 

parts were denoted as playing important roles in the processing capabilities of the column 

as well as the network of columns. The upper section of the column including the 

supragranular layers and encompassing the upper pyramidal cells is a prototype for the
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upper division of the model. The section intersecting the infragranular layers that

contains the lower pyramidal neurons corresponds to the lower division of the model.

Cortical 
Afferents

INPUT

Thalamic 
Afferents

OUTPUT
Sub-Cortical

Efferents Figure 20. An artificial column.

The section of the biological cortical column that intersects the granular layer receives 

afferents, both cortical and thalamic, so in the model it is represented as an input. The 

external data are passed into the column through the thalamic input. The cortical input is 

used to interconnect the columns into a network. It is also used to set the activity of the 

column at the low level indicating the goal -  problem to solve. Direct synapses and some 

of the interneurons connect the input layer w ith the upper and lower pyramidal cells. In 

the model, there are paths that transmit the input activity into both divisions.

There are also interneurons that connect the upper pyramidal neurons with the lower 

pyramidal cells. That is reflected in the model by upper-lower connection.

From now on. the term column will be used to refer to the model. If there is a danger of a 

confusion between the model and the biological cortical column a proper adjective will 

be added.

Si fiool o f  Co mp ut e r  Setent  e. Car l e ton  Univers i ty
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Cortical
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C o n n e c t iv it y

The artificial cortical column is a building block for constructing computing networks. 

The external connectivity of the column plays, therefore, a crucial role. The connectivity 

of the column is illustrated in Figure 21.

There are two connections that, as internal to the column, do not take part in inter

connecting columns in a network. The Upper-Lower connection transmits the activity 

from the upper division to the lower division. The internal Lower-Upper connection 

realizes the inhibition (suppressing) of the upper division by high activity in the lower 

division.

The Upper-Upper connection corresponds to the biological columnar efferents realized 

by the axons of the upper pyramidal cells carrying signals from one column to another. 

Those axons originate in the supragranular layers and terminate in the cortex.
Upper-Upper b

U pper / r
Another column

Another column
external input

V I
Lower

External output

Figure 21. The connections of the artificial column.

The Lower-Upper connection, in turn, corresponds to the axons of the lower pyramidal 

cells. Some of those axons (mostly from the higher located - in layer 5 - lower pyramidal 

cells) carry signals to other cortical areas.
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Most of the axons of the lower located low pyramidal cells, those in layer 6 , project to 

the sub-cortical regions. In the model, the artificial counterparts constitute the output of 

the column.

In the model, some important simplifications have been made in comparison to the 

biological cortical column. Firstly, the input is being injected into the upper or lower 

division of the column. The reader may remember, that in the biological column, the 

granular layer is the input layer. The activity, however, is carried to the upper and lower 

divisions through the interneurons. Secondly, there is no difference between the location 

of the termination of the cortical connections from the upper division and from the lower 

division. They project to the same targets. The biological efferents originating in the 

layer 5 usually project to more distant areas than those originating in the upper layers of 

the cortex.

F u n c t io n a lit y

The artificial column is a three-state device. If there is no input activity and no sustained 

internal activity from the past, the column is inactive. The interpretation of the inactive 

state from the information processing perspective is that the concept represented by the 

column is not present in the current computing context. It is a definitive NO. There is 110 

output activity whatsoever from a column in that state.

The upper division of the column can be activated by action potentials from other 

columns, incoming through connections from both, upper and lower, divisions, and from 

the external, cortical, afferents. The input activity of the upper division is calculated 

according to the following formula:

mputActivity = ]*T action Potential * connectionStrength
-jet 1/%-Conneĉ ons
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activeConnections are those from the columns that have not been recently activated 

directly by this column. That rule prevents the existence of self-exciting pairs of 

columns. It does not. however, prevent a longer self-exciting loops.

After the input activity is integrated in the upper division, the division sends action 

potentials via connections to other columns. The pattern with which the activity diffuses 

throughout the network depends on the strengths of the connections.
Upper-Upper

Cortical •Upper

OutputsInputs
Upper-Upper

Upper-Upper
Lower

Figure 22. The integrating capabilities of the upper division.

The activity in the upper division is transmitted, as well, to the lower division. The 

Upper-Lower channel does not have any resistance, so the lower division gets exactly 

same level of activity as the upper one. Although there are connections leaving the lower 

division, the activity is not transmitted anywhere until the threshold level is reached. If 

that happens, it is said that the column fired. Then the activity is distributed through 

action potentials to the receiving columns. The strength of a specific connection 

determines how large an influence on the receiver the firing of the column w ill have.

Both the lower and upper divisions receive external afferents. These afferents play an 

important role as the inputs to the system. The cortical afferents are incoming to the 

upper division, and the thalamic afferents are incoming to the lower division. The 

cortical input can be used to express goals by activating the upper division of the

School o f  Com puter Science. Carleton U niversity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Nctmisolvcr: A  Neural N ew ark Based on a Cortical Column. Master Thesis. Andrzei Bieszczad______ 54

column1'’ that represents a specific, desirable state, feature or concept. A similar process 

occurs in the biological brain where the limbic system can trigger an activity of a column 

that represents, for example, a desire. The persistence of that activity denotes the goal to 

achieve - the desire to satisfy. The goal is reached when the activity is suppressed. That 

will happen when the column fires. The firing of the column can also trigger some 

external action. Figure 23 illustrates that process.

The upper division of the column is a vehicle for processing abstract data through the 

changes to the activity patterns depicting concepts or sequences of concepts. On other 

hand, the lower division is in touch with the physical world as represented by the activity 

of the sensors.

The upper division is the integrating part of the column, since it correlates signals from 

other columns. The lower division is the decisive component of the column. It 

determines whether the concept is perceived and controls the output that may, in turn, 

alter the environment. Ultimately, the lower division is a vehicle that drives the behavior 

of the column toward goal satisfaction.

''’Or upper divisions oi a set 0/ columns il the concept has a distributed nature.

,S‘< hool of Com puter Si tenve, Carleton U niversity

a) b)

(suppress)
Feature

observed L£>mM Other column

O lh er colum n

External output

Figure 23. Setting the goal (a) and its satisfaction (b).
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After firing, the column becomes insensitive for a while. No input activity, thalamic nor 

cortical, is accepted. That prevents two mutually connected columns from firing in an 

oscillating manner. Such behavior has been observed in biological systems as well.

A daptivfty

The strength of the connections between the columns determines the nature of the 

changes to the patterns of network activity. That aspect of the behavior of the network 

defines the information processing characteristics of the network. The capability to 

construct an information processing device by a dynamic process is the very core of the 

interest of this work. Like in other types of neural networks, that capability is achieved 

by the adaptivity of the strengths of the inter-columnar connections.

In the model presented in this work, there are two rules of how the connections are 

modified depending on the patterns of changes in the activity of a column and the 

columns that transmit signals to and receive signals from that column. The first rule (the 

feedback rule) states that if a specific column fires, the strengths of all Upper-Upper 

connections to the columns that fired directly before are increased. That process is 

illustrated in Figure 24. Column B is the center of the example. Columns A and C are 

connected to B. At a certain point in time, let us say I, column A fires: columns B and C 

do not. In the next tick, I + 1. column B fires. According to the adaptation rule, column 

A fired directly before column B, so the connection to the upper division of column A 

from the upper division of column B is strengthened. The connection to column C stays 

the same or is, at least relatively, weakened.
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* * 3 > i F n  “’ n ^ x ^ n
A B C  A B C

Figure 24, The adapting process of an Upper-Upper connection.

It is important to note that after the connection strengths are modified, it will be more 

likely that activity in the upper division of column B will cause changes in the activity of 

column A rather than in column C.

The second adaptation rule (the feed forward rule) says that the strengths of all 

Lower-Upper connections are increased between the columns that fire now and those that 

fired just before. Figure 25 illustrates the process of modifying the Lower-Upper 

connection. In the figure, there are again three columns: A. B and C. Column B fires at 

the time T and sends the action potentials to columns A and C. At the time I + I. column 

C Fires. The adaptation process increases the strength of the connection between the 

lower division of column B and the upper division of column C.

A B C  A B C

Figure 25. The adapting process of an Lower-Upper connection.26

The implications of the feed forward rule of adaptation are similar to those stated for the 

feedback rule: after the modification, firing17 of column B will have bigger impact on the 

activity in column C than in column A.

i ?A column fires when the activity level ol the lower division is higher than the output threshold, so the 
column transmits activity Irom the lower division only if firing.
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The reader should note that both adaptation rules work at the same time. For the clarity 

of the description they were separated in the examples.

The ability of a column to adapt the strengths of the connections with other modules 

depending on the patterns of network activity will be analyzed from the networks 

perspective in the next chapter.

C o n n e c t io n  s t r e n g t h

There are currently many formulas for the strengths, or weights, of the connections 

between the nodes of neural networks in use or trial. Most of the learning schemes, the 

algorithms ruling the adaptivity. like that described in the previous section, are slow. 

They require many iterations of presenting samples before the networks can learn; i.e.. 

recognize classes of input patterns, extract features, suppress input noise, etc. One of the 

premises of this work was to design a formula for the strength of a connection that would 

allow an input pattern to be recorded fast.

The model was implemented using two different approaches to the computation of the 

strength of a connection:

• hebbian and

• probabilistic.

The probabilistic approach was proposed by Burnod |7. 2]. The learning rules are. 

however, different in this work.

School o f  C om puter Science. Carleton C niversitv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

At.'i'i1.'; n . / . .1 ScwiiLN i'tHork BiisjU on u Cu.rtn.al Colunu . Master Thesis. Andi :ei Hies:e:ail

Hebbian style

The hebbian approach employs the modification rule that was proposed by Hebb 1131: if 

two cells tend to be activated together then the strength of the connection between them 

is increased; if the opposite hold., then the connection strength is weakened. That rule 

h as  been modified for the purpose of this work due to the sequential nature of the 

computations of a network of cortical columns The analysis of the coaciivation aspects 

of cortical columns is not attempted in this woik. though that might be part of the future 

experiments.

in the terms of the hebbian lules. the modification scheme descnbed in the previous 

section can he re-worded. If the value of a connection strength is designated p. then pe 

|U.i )c'3\. The strength of the connection that links the upper division of the column that 

has just tired with the upper div'sion of the column that fired directly before gains a 

constant or variable value c <=|0 I]c3\. The variable e can he a function f of the 

previous strength p x or the activities. u ptti evnap.iC and ^ n3pt,c. of the columns that are 

connected by the link, or more complex combination of ail of those. Generally, using a 

variable £ is advantageous over using a simple constant. The adaptation rule for the 

Luvver-l pper connection is similar;

p ... = p- -r *' where e -  f ( p . , r  ... , . , if )  ̂ [ 0 ,1 ]  c  "Jv

Probabilistic style

lit the probabilistic approach, ceitam statistical parameters are recorded for every 

division of each column, let us say C. and every connection. C,Cj. and later used to 

calculate the strength of the connection. When a division activity increases from low 

levei to  high ievel of activity, then the counter CUp is increased. Another counter. Cin. is 

increased fo r  each column that sent action potential to the inputs of the column in

C  h d t i l  o f  C < V ,  i , ' in r ,  ( ' a i l ' t a n  I  ' w w ?  w / >
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question, so it counts the global influences on the column. The third statistical parameter, 

C out, counts all receivers that fired as a consequence of receiving action potentials after 

this column fired. A counter of influences. C jC jcons, is maintained for each connection. It 

is increased each time the connection carries an action potential from the pre-synaptic 

column, the transmitter, that fired to the post-synaptic column, the receiver, that fires as a 

consequence. These statistical data are used to calculate the strength of both, the 

incoming and outgoing, connections.

There are several probabilities calculated for the purpose of calculating the strength of a 

given connection. In the following formulas, A and B are pre-synaptic and post-synaptic, 

with respect to the connection in question, cortical divisions respectively.

• The probability indicating how likely the change of the activity of the pre-synaptic 

division from low to high is to generate a successful action potential (i.e.. such that it 

will take part influencing the post-synaptic division):

p - ABcon,
con̂

A up

The probability of how inclined the action potential carried through the connection is 

to increase the activity of the post-synaptic division:

ARp  COOl
m g

in

The probability of ho a prone the post-synaptic division is to change its activity from 

low to high u p o n  reception of any action potential from any input:

P
up g
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• The probability describing the likeliness of an action potential being carried over the 

connection after the pre-synaptic division's activity moves from low to high, 

changing the state of the post-synaptic division:

p  -  ^ ^ c o n s
r OL‘t D

°our

• The probability of how prone the post-synaptic division is to influence other columns 

alter changing its state from low to high:

p  - ^ up
yp. ™ Dh’ou!

The strength of a Lower-Upper connection is calculated using the first three coefficients: 

^Ab = ^cons ' ^in*^up

The strength of the Upper-Upper connection may be computed using the same formula 

hut w ith the first and two last coefficients instead:

PAB — ^ c o n s ^ ^ o u t ' ^ u p 2

There is a number of alternate vs ays to combine Pcons. P,n. Pup. Pout and Pup2 in 

formulas tor the strength of the connection. For example, tor an Upper-Upper connection 

it might be advantageous for the reasons that will be explained in C’hapter 4. to just use

PAB — P c op s -

The strength 0 1  the connection between the upper and lower division is fixed and its

value is 1. Consequently, any activity in the upper division is transmitted to the lower

division. The strength of the connection in the opposite direction is fixed to -1 If the

S V h o a i  o f  ( ' n m p m v t  St  i t-m r  ( ' ar lc tot i  f 'm> n  \ i t \
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activity in the lower division exceeds the threshold, the activity in the upper division is 

suppressed.

Although the first impression might be that the hebbian and the probabilistic approaches 

are different, a little closer look allows us to restate the latter in the same manner us the 

former:

P r  +■ 1 — P r  ^ w h e re  i, — £  ( p T ,  OCpre Synapj|C # ^pos! - synaptic ) I 0  *

The difference is that the function f  is now given in statistical rather than analytical 

terms. The reader may note that the formula using the defined probabilities may include 

the decay and inhibition components. The decay is implied by the use of the statistical 

counters C Up, C ,n , C out and C jC jcons. If one of the inputs does not contribute to the 

activity of the column, then, in consequence, the strength of the connection from the 

corresponding division is decreased, because Bup and B,n are increased, and ABcons stavs 

the same. If the action potential carried by one of the outputs does not contribute to a 

high activity of the receiver, so ABcons does not change again, then the strength of the 

connection is decreased, because Agp and Aout are increased.

Another counter. C down. that stores the number of the cases when the activity of the 

column went down, is included in the model. C down could be used in the definitions of 

analogous probabilities that would provide an inhibitory factor in the formula. The 

inhibition i> included in the considerations of future enhancements to the model.

T h r e s h o l d s

Each division of a column has a number of activity thresholds:

• a low activity threshold defines the inactive state.
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• a high activity threshold defines the active state and

• an output threshold indicates the minimum activity that can he transmitted in the 

form of an action potential to the receivers through the output connections.

All activity thresholds in the model have been fixed; i.e., they are not adaptive. The 

output threshold of the upper division is 0. The output threshold of the lower division is 

the same as the high activity threshold. The latter determines when the column fires, 

because the lower division is the output component of the column.

C o m p a r is o n  w ith  B u r n o d ’s  m o d e l

In his work "An Adaptive Neural Network: The Cerebral Cortex" (|7 |), Burnod proposed 

a columnar automaton, i.e.. a model of a cortical column, in an attempt to explain the 

functionality of the cortex from the lowest to the highest functional level. Burnod's 

model is based on the concept that was first proposed by Szentagothai in his work "The 

Module Concept in Cerebral Cortex Architecture" f|31J). The concept was considerably 

refined, particularly the aspect of its connectivity and general functionality, by 

Vlountcastle in "An Organization Principle for Cerebral Function : the Unit Module and 

the Distributed System" (|23 |) and Zeki and Shipp in "The Functional Logic o f Cortical 

Connections" f|37|). Burnod followed the naming convention of his predecessors and 

called the automaton module, rather than column. A functional module is defined as a set 

of columns that have a homogeneous activity. Although the existence of the upper and 

lower pyramidal columns and different connectivity patterns of the upper and lower 

sections of the column was known before. Ballard in "Cortical Connections and Parallel 

Processing■ Strut ture and Function" i|4 |)  was the first to propose the model that clearly 

identifies three di'.tinct parts: the uppei, the intermediate and the lower divisions.
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Burnod's original contribution is the concent of a call and action tree and the use of the 

trees to explain the functionality of the cortex.

In his original work. Burnod used the divisions in the descriptions of the processes 

occurring in the cortex. The automaton, however, is viewed as one entity that can have 

high or low activity or no activity at all. In his studies, Burnod uses upper-upper 

connections and upper-lower connections. The upper-upper connections used in this 

thesis have a similar to Burnod's application: i.e.. to spread columnar activity in a call 

tree. The upper-lower connections are not used in our model. In Burnod's model they 

represent the probability that cortical inputs alone will induce the high activity in the 

receiving module.

Unfortunately, Burnod's original work and later publications (e.g., |2 |) do not provide 

full details about the model. The activation rules for a module use the states of the 

internal and external inputs and the previous state of the module. First, the global 

external input is calculated. An a priori specified mask defines which individual external 

inputs will contribute to the global input of the whole unit. Next, each of the individual 

internal inputs is used to calculate corresponding local internal and external outputs. The 

calculation is based on the truth table that uses the global external input a s a modulation 

factor for the inputs. Burnod uses EO, E1 and E2 to denote, respectively, none, low and 

high activity. Each of the local outputs may be in one of those three states. The state that 

is predominant on all of the internal outputs is assumed to be the state of the global 

internal output of the module. Similarly, the state predominant on the local external 

outputs becomes the state of the global external output. It is not clear which of these 

outputs is to be used in the next step of the column automaton.

The calculations of the local outputs use the strengths of the connections between the 

modules expressed by two probabilities. Those probabilities employ the statistic al data
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collected during the learning. The type of statistics and the modification rules differ 

considerably from those presented in this thesis. The rules for calculating the states 

specified by the truth table are not uniform: i.e.. they differ depending on the position of 

the module in the network. Burnod does not state it explicitly, but each module must be a 

priori assigned one of the several lules specified in the table.

The global outputs can be expressed by the following formulas:

01 ( t)  = f ( l l ; ( T) , I E*( T) , OE. ( T -  1),  PO , P 2 !)

OE ( i )  = g ( l l ’(T) ,  IEk ( i ) ,  OE ( i  -  1 ) , P 0 ; ,  P2; )  

where:

Ol and OE stand for internal and external outputs respectively.

i and j are the indices of the receiving and transmitting modules respectively, and 

k indexes the external receptive field.

!i denotes the internal input.

IE stands for the external input;

PO and P2 are defined below.

In this thesis, more classical forms of the activity and output functions are used in the 

model of the cortical column. The activation rules, therefore, differ considerably from 

those used by Burnod and his coworkers.

The learning rules of Burnod's model are of a probabilistic nature. There are three types 

of counters for each local input used to express the probabilities. The first counter, C., 

counts the cases when the activity at the E2 ievel on the local input was accompanied by
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the activity at the EO level on the global output. The second counter, C+, counts the cases 

when E2 on the local input is accompanied by E2 on the global output. The third 

counter, Cgg* is increased each time there is a high activity, i.e.. E2. on the local input. 

The probabilities PO and P2 are calculated as follows:

POf =
C ^ 2

p i
P 2 f -  C+

&E2

PO represents the probability that the learning module is inactive before a strong input 

from the transmitting module. Conversely. P2 represents the probability that the learning 

module is highly activated before a strong input from the transmitting module. Those 

definitions are in contrast to the modification rules used in this thesis.

In addition to the differences stated so far. there are several aspects unique to the model 

presented in this thesis. Firstly, we explicitly use the two divisions as two separate 

entities. The interactions between the lower and upper divisions are also specific to this 

work. A new- type of a connection has been introduced: i.e. the lower-upper connection. 

Generally, our model is less probabilistic in nature: i.e.. the probabilities are merely used 

to express the stiengths of the connections. The implication is that it is possible to use an 

alternate, hebbian, style of learning. That would be difficult in Burnod's model.

For more details, the reader is referred to Burnod's original work or to Alexandre et al.. 

|2 |. In the latter, some of Burnod’s coworkers explain the essence of Burnod's model in 

much simpler terms than the original and analyze some of its applications.
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In Chapter 4. a comparison between the networks of columns and modules will be 

presented.
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CHAPTER 4 

The neurosolver - a network of cortical columns

N e u r o s o l v e r  -  a n  in t r o d u c t io n

Every biological cortical column, as well as the artificial model introduced in the 

previous chapter, represents a certain amount of information. The location of the column 

in the network is determined by the place that the piece of information that the column 

represents, be it a feature, concept, idea. wish. etc.. occupies in the corresponding 

physical domain that has been mapped onto the network. Therefore, any pattern of 

columnar activity in the network may be treated as a point in the space of all possible 

states of the observed environment. The connections between the nodes, as defined in the 

model presented in this work, describe temporal relationships between individual bits of 

information represented by the nodes. If so. then groups of connections represent 

temporal relationships between two adjacent states (adjacent with respect to time) in the 

domain. Hence, anything that happens in that domain has a corresponding sequence of 

patterns of network activity.
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NEUROSOLVER

E ffe c to rs

Sensors

Figure 27. Applying a neurosoiver.P ro b le m  to  s o lv e

The work described in this thesis is just the first step in the direction to achieve the 

ultimate goal of this author, i.e.. to build a device that would mimic the functionality of 

the human cortex. Such a device we will call a neurosoiver. The network of artificial 

columns as described in this thesis is the first incarnation of the neurosoiver. The 

neurosoiver is a device that is capable of recording the behavior of any physical system 

or object. The object can be observed by the system of sensors that detect its state. The 

states and. more importantly, the patterns of their changes are input to the neurosoiver. 

The neurosoiver modifies its inter-columnar connections according to the adaptation 

rules described earlier in this work. On the other end, each column has a determined 

meaning and may output signals that afflict the manipulators ready to alter some aspect 

or aspects of the observed object.

The recorded information may be used to activate required actions of the manipulators by 

presenting a goal. It is a certain state of the object, a point in the space of all possible 

states. The neurosoiver is capable of activating the path in that space that leads from the 

current state to the goal state through a number of intermediate states. In the course of 

that activation, some of the columns involved fire and control the manipulators in the
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same way as it was observed and recorded in the past. Through the sequence of the 

manipulations, the required state of the object is achieved. The goal has been satisfied, 

the problem - solved: that is the origin of the narr~ of the device: neurosoiver.

The neurosoiver starts to interact with the subject system as a tabula rasa. It gains all its 

experience, and problem solving capabilities, through the interchange of the sensory and 

manipulation control data with the system through the inputs and outputs. There is no 

separate learning cycle - the neurosoiver learns while servicing the system, though at the 

beginning there is not much it can do. In the neurosoiver described in this work, it is 

possible, in addition to the mixed mode, to run separately in the learning or performing 

mode.

In the further parts of this chapter of the thesis, the mechanics of the problem solving 

capabilities of the neurosoiver are explained. To better visualize the behavior of the 

network, all considerations involve a simplification that each goal is initially given as an 

activation of a single column. Usually, any complex problem requires a distributed 

representation. That will be visible when the sub-goals are analyzed.

A rchitecture

A neurosoiver is a network of interconnected artificial columns. The connectivity follows 

the rules described in Chapter 3. Figure 2X illustrates the connectivity for a number of 

columns that are shown in a cross-section of the neurosoiver. A column receives signalsv-

from the sensors through a thalamic input that is a part of the external input to the 

neurosoiver. The cortical input is another external input to the neurosoiver, and to each 

column, but it does not come from the sensors. It is used to present the goals, or in other 

woids tasks, for the neurosoiver. It is also used to provide additional clues that may 

contribute to the resolution of the problem. Each column contributes to the overall output
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of the neurosoiver. although only certain signals may be in fact used by the manipulators.

The cortical input signals activate the upper division of the column and are propagated to

upper divisions of other columns through the upper-upper links. When a column fires,

i.e.. its lower division gets highly activated, then the lower-upper links carry the signals

to the upper division of other columns as well.
Cortical inputs

Thalam ic
inputs

O utputs

Figure 2X. A cross-section of a neurosoiver.

The neurosoiver that is analyzed in here has a matrix architecture, as illustrated in Figure 

29. The number of nodes is the same for each row and column of the matrix, although 

they could have different sizes without impacting the behavior of the network. Each node 

is connected, through lower-upper and upper-upper connections, to its neighbors in eight 

directions on the plane: vertical, horizontal and diagonal.

Figure 29. A top view of a neurosoiver

That architecture is more suitable to describe the behavior of the neurosoiver than a 

completely inter-connected network. The model has both modes implemented, but the
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completely inter-connected architecture is difficult to simulate due to a large number of 

connections that must be tested for growth in each cycle. The planar architecture lie 

much simpler to build in hardware as will be described in the last chapter.

The initial strength of the connections in the neurosoiver is zero, that is no activity car. be 

propagated from one column to others. When the sensors start to communicate the 

sequences of events occurring in the observed system, the connections between firing 

columns are adjusted according to the rules described in Chapter 3. That process is 

illustrated in Figure 30.

Learning

O

G

O

O
Figure 30. Learning a sequence.
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In the cross-sect ion o f  a par t  o f  a neu roso iv e r  there  are four  c o lu m n s :  A. B. C and D. T h e  

initial s t rengths  o f  the con n e c t io n s  bet ween  all the c o l u m n s  are  zero.  H o w e v e r ,  when ,  for  

exam ple ,  co lum n  A f i re s  and that  is fo l lo w ed  by the f ir ing  o f  c o l u m n  B, then the  

up pe r -u pper  connect ion  bet ween  B and A is s t r eng then ed  us ing the  f eedback  rule.  

Addi t ional ly ,  the value  o f  the s t rength o f  the lo w er -u p p er  co n n e c t io n  b e tw e en  A and B is 

increased as well us ing the feed fo rward rule.  If c o lu m n  C  f ires next  in the sequence,  

than the connections b et ween  B an d  C are modif i ed  in the  san .e  wa y  as be tw een  A and  B. 

f o ium n  D is the next  to fire in the i l lust ration.  Aga in ,  the  co n n e c t io n s  bet ween  C  and D 

are m odi f ied  appropr ia te ly .  Af ter  som e  t im e  de p e n d in g  on the learning schem a  used,  two 

cha ins  are recorded as show n  in Figure  31. W h e n  us ing the probabi l i s t ic  learning rules,  

the chains  are fo r m ed  jusr af ter one  presen ta t ion o f  the s equence.  T h e  hebb ian  schem a

usual ly require  m o r e  t ime to fo rm  the associa t ions .

C A L L

A C T IO N

Fig ure  31. T w o  learned chains .

The  first chain  l inks  the upp er  d iv i s ions  o f  the c o l u m n s  th ro ugh  the up p e r -u p p er  

connect ions .  It is c rea t ed  in the reverse d i rec t ion to that  of  the t i r ing  co lu m n s .  If the 

t i r ing o f  c o l u m n  B is t rea ted  as a co n s e q u e n c e  o f  the fir ing o f  c o l u m n  A, than sp read ing a 

low level activi ty f r om  B to A m a y  be und ers tood  as  a call ,  or a search,  for  the reason of  

B t iring.  I he same reason ing appl ies  to all c o l u m n s  in the chain .  T h e r e fo r e ,  it D is 

ac tivated  at a low level and that ac tiv ity  is p ro pa ga ted  to C to B to A. than that is a search 

tor  the r e a s o n s  o f  D firing.  If D represents  a des i r ed  state o f  the obser ved  sys tem,  than 

A -B -C -D  is one  ot the poss ib le  paths  to satisfy that  goal .  The chain  that  is genera ted  

between the  uppe r  div i s ions  is. therefore ,  ca lled a call  chain.
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Th e  increas ing s t rength in the lo w er -u p p er  con n e c t io n s  be tw een  A. B, C and D, 

const i tu tes  an o th e r  cha in .  Tha t  is ca l led  an ac tion cha in ,  bec au se  if any  o f  the  co lu m n  of 

the cha in  gets  h igh ly  ac t ivated,  it will  cause  the  next  c o l u m n  in the chain  to fire as  well .  

Th at  type  o f  cha in  requires  m a n y  m ore  repeti t ive p re sen ta t ion s  o f  the input  seq uence  than 

the call  chain .

C a l l  t r c ^ s  -  a  b r e a d t h - f i r s t  s e a r c h  

A call tree

T h er e  m igh t  be m a n y  causal  sequences  leading to a pa r t i cu la r  state o f  the  sys tem.  There  

m igh t  be, therefore ,  m a n y  chains  leading to the sam e no de o f  the n eu roso iv e r  that  has 

been in teracting wi th  that  system. W h e n  a  goal  node is ac t ivated ,  l ike no de G  in Figure 

32.  its ac tiv i ty  spreads  a long  all cha ins  that  v e r e  recorded.  It is not  a s ingle call chain  

crea ted  an ym ore :  it is a call tree.  T h e  ac tiv ity  will spread in s teps  into all d i rec t ions  that  

m ay  be the  solut ion to the p rob lem .  O n e  o f  such s teps  is i l lus t ra ted  in Figure  32.

Figure  32 includes  the no des  ( shadow ed)  that  are a l ready in the  call  t ree.  T h e  a r ro w s  that  

are  out l ined indicate the recorded  di rec t ion o f  the call  -  the  co n n ec t io n s  that  were  

s t reng thened in the past  d u e  to the c o lu m n s  f ir ing  in the o p pos i t e  d i rec tion.  O n e  ot  the 

cha ins ,  or  paths ,  o f  the t ree has  been labeled.  C o l u m n  G  is the goal ,  that  is the root  of the 

call tree.  Eac h  o f  the subsequen t ly  ac tivated  co lu m n s .  A, B and C .  b ec o m e s  a sub-goal  to 

achieve  the m ain  goal G .  In Figure 32,  c o lu m n  D is ac t iva ted  as the next  sub-goal  and 

added ,  in that way.  to the  chain  G -A - B - C - D .  In the sam e  step,  m a n y  other  new leaves  are 

added in the same w a y  to the tree.
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Figure  32.  The c

SUB-GOALS 

/  \  GOALn n n n n
C  C B A G

CALL

SUB-GOALS__

X  GOALn n n n n
0  C B A G

; t ion ot  a call  tree.

Triggering the resolution

T he ac t i \  ity ini tiated b> the goal co lum n spreads  th rough ou t  the .network until on e  of the 

co lu m n s  in the  t ree fires.  That  m ay  happen d u e  to the sensory  input ,  as i l lust rated in 

Figure  3  v  or th rough  the accu mula t ion  ot suff ic iently h igh ac tiv ity  in the uppe r  d iv is ion 

caused by ac tion po tent ia ls  ar r iving through -.everal cor t ical  inputs.  A l thou gh  the activity

\ (  h o u t  af  ( ' n m / i i a r t  S/ trn< r ( i j r !<’! t ) n l  / / / > <  / \ / / \
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m a y  con t inue  to spread out  a long o ther  branches  o f  the tree,  the pro paga t ion in this 

pa r t i cu la r  chain  is terminated.  T h e  external  input  to the fi ring c o l u m n  m ean s  that  there  is 

an obs ervat ion  m a d e  n o w  or a c lue,  o r  an ax io m ,  set a priori ,  tha t  indica tes  tha t  this path 

m a y  lead to achiev ing  the goal .  T h e  firing co lu m n ,  co lu m n  D in Figure  33. is ca l led  the 

t r igger  o f  the solut ion to the posed prob lem.

o o o o o o o o  
o o o o o o o o  
o o o o o o o o  
o  o  o  o  o  ©  ©

CALL

OOOGOOOw rriM.tj |  2  n  
0 0 0 0 0 © 0 0  " c 8 * 

o o o o o o o o  
o o o o o o o o

Figure  33. T h e  resolu t ion t rigger.

No te  that  the  use o f  an eye and a hand in the f igure s  in this ch a p te r  is only  a m e a n s  to 

bet ter  v isualize  the p rocesses  occurr ing in the  neuroso iver .  T h e  readt  r should  treat those  

s y m b o ls  as rep resenta t ions  of  any  type  o f  sensat ions  and manipu la t ions .  For  e x a m p l e ,  the 

t r ig ger  ca n be just a  state o f  mind that is suff ic ient  to t r igger  an  ac t ion  a long the path 

towar d the solut ion o f  the pro blem.  T h e  ef fec tor  that  is r epres en ted  by  the  hand  can ra nge  

f r o m  a robot  a r m  to a voice  synthes izer  ex pla in ing  the solution to the  user  using pre -bui l t  

ru les  assoc ia ted  with each  node.

The resolution path

T h e  t r igger  o f  the p rob lem  resolut ion,  the c o l u m n  that f i res first in the search path .  is. 

subseque n t ly ,  shut d o w n .  The  fir ing and shut t ing  d o w n  o f  c o l u m n  D m eans  that the
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sub-goal represented by that column has been satisfied. If the lower-upper connection to 

the next node in the tree in the direction toward the root, from D to C in Figure 34, is 

strong enough, the action potential that it carries to the recipient may cause the next 

column to fire. That is shown in the figure: column C fires. Similar processes occur now 

in column C. There might be a connection from the firing column to the effectors, so in 

addition to perhaps triggering the firing of the next column in the search tree, the firing 

of that column might have mine impact on the observed system because of the changes 

to the acti\ its patterns of the output of the neurosoiver that impact the effectors. In that 

way. a part of the overall task has been carried out.

o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o

Figure 34. The resolut ion.
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Sensory-guided resolution

It may happen, that the lower-upper connection between the firing column and the target 

columns in the call tree are weak. None of them can fire. In that case, the system cannot 

deude what the next step in the resolution of the problem should be. The resolution is 

su>pended waiting tor further clues. The activity can again be spread throughout the
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network in an attempt to search for the clues. The explorations may lead to partial 

resolutions being found in other parts of the call tree. That may affect the system. For 

example, one of the columns in the original path that was not getting sufficiently high 

signals might suddenly receive a thalamic input and finally fire. The implication is that 

the clue the neurosoiver has been waiting for has been found. The resolution may 

proceed further in this branch.

In Figure 35, there is a simple example of a sensory-guided resolution. After firing 

columns D and C, the strength of the connection between C and B is too low to activate 

B by the action potential alone. However, when column C fired, an action potential had 

been sent to the effectors that altered the system. The change to the system has been 

noticed by the sensors and column B is notified about that by receiving a signal through 

its thalamic input. That, together with the activity caused by the input from column C. is 

sufficient to fire column B. The firing of column B may. in turn, cause another change to 

the system, and column A may, in turn, have increased activity on its thalamic input.
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Figure 35. A sensory-guided resolution.

Although the bring is not sufficient to activate a complete resolution path, that can he 

achieved through the interaction between the internal processes occurring inside the 

neurosoiver and external processes being observed by the sensors and controlled, at least 

partially, by the neurosoiver through the elfectors.
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If the neurosoiver is used to solve a mental task, the input may be controlled by the 

operator who presents the system with the known facts. In a situation where the 

neurosoiver has some doubts about the next step in the solution, it may generate 

questions by including all options that are associated with the columns that could fire 

next. That may be the facts that became known in the course of the problem resolution or 

were known a priori, but the operator did not include them in the initial set of the input 

data, for example if they did not seem to be related or be of critical importance to the 

solution.

The goal satisfaction

When a column fires, and is shut down by the inhibition action described before, the 

activity in its upper division, of course, disappears. Subsequently, all columns that have 

been activated by the firing column in the call tree will also shut down as the result, 

unless they receive input signals front other sources. Actually, the whole sub-tree of the 

call tree is shut down. In Figure 36, such a case is exemplified by firing column A. A is 

another column fired in the chain D-C-B-A-G. When it fires, the activity in the sub tree 

for which A is the root vanishes.

o o o o o o o o o o o o o o o o
o o G o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o
o o o o o ® © o o o o o o ® © o
o o o o a  o o ® o o o o © o o ©
o o o o o ® o o o o o o o 0 o o
o o o 0 o o o o o o o o o o o o
o o o o o o o o o o o o o o o o

Figure 36. The goal satisfaction.
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The next column to fire, in the example, is column G. That is the initial goal with which 

the neurosoiver was presented. When G fires, the goal has been satisfied. The reason for 

the existence of the call tree disappears, so ultimately, the activity in all branches of the

call tree ceases.

Through the mechanism of a call tree, a breadth-first search has been performed. The 

resolution path. D-C-B-A-G in the example, generated a number of output signals that 

constitute the solution to the posed problem.

Action trees

It may happen that certain sequences of events occurring in the system and corresponding 

changes to the patterns of columnar activity happen very often. As a consequence, the 

strength of the connections from lower to upper divisions of the columns involved grow' 

considerably in the direction of the firing sequence. The connections become so strong 

that they are able to induce a high level of activity in the recipients in the chain. Each of 

the columns involved realizes a part of a certain action by carrying action potentials to 

the effectors. Hence the chain generated in that way is called an action tree.

There is an action chain illustrated in Figure 37. The sequence D-C-B-A was observed in 

the past so many times, that it is sufficient to fire column D to trigger the action, i.e.. the 

lower-upper connections from D to C. from C to B and from B to A are strong enough to 

carry the action potential on their own. The firing of each of the columns. D. C, B and A. 

causes some change to the system. All those changes constitute the action that can be 

associated with the action chain in this example. D-C-B-A. In more general case, not 

only a chain but an action tree can be created in a similar way.
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Figure 37. The firing of an action tree.

Hierarchy and parallelism - using a neurosolver m odules.

Hierarchy of neurosolvers

When examining the brain, it has been indicated that some cortical areas are 

interconnected in hierarchies. That is the case with, for example, primary, secondary and 

tertiary vista! areas. The topology mapping in each of those areas is different and

School o f  Computet Science. Carleton University

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

NcurosolvL'r: A Neural Network Based on a Cortical Column. Master Thesis. Andrzci Bu-s:c:ad_______SI

encoder increasing levels of abstraction. Several neurosolvers can be used in a similar 

way. Each of the neurosolvers may be trained with data at different levels of abstraction, 

so different feature maps are generated for each of the neurosolvers. The concepts or 

features are also associated between the levels. There are three such neurosolvers in 

Figure 38. At the highest level of abstraction, there is a call tree in Neurosoiver 1. At 

some point, column A is activated. That column has been associated with several other 

columns in the lower level of the hierarchy - with those that represent related concepts or 

constitute the higher lev el concept represented by A. The activity spreads not only in 

Neurosoiver 1, but also in Neurosoiver 2. The same may happen between Neurosoiver 2 

and Neurosoiver 3 when the activity reaches column B in Neurosoiver 2. The search at 

th- lower level of hierarchy may be critical to the solution of the problem, if. for 

example, there is not enough evidence at the higher level of the hierarchy to undertake 

any action, i.e.. to fire any column in the call tree at that level.

N eurosoiver 1

N euroso iver 2

N eu roso iver 3

Figure 38. A hierarchy of neurosolvers.
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Parallel processing

A call tree realizes a breadth-first search and. at least in the envisioned hardware 

implementation, ensures parallel processing of the problem. That is only one aspect of 

the parallel nature of computing in the neurosoiver. Another type is to spread the activity 

into different neurosolvers that have been associated. In Figure 39. the call tree active in 

Neurosoiver 1 has two branches: G-A-B and G-M-N. The last columns in both branches 

have association with columns in other neurosolvers, therefore the activity is transmitted 

and new call trees are generated in those neurosolvers. The search is now performed in 

parallel in three u ferent neurosolvers. The neurosolvers may be organize' 1 into a 

hierarchy or may map just various aspects of the subject system. Finding sufficient clues 

in any of the maps, may contribute to the solution to the overall problem.

/
N eurosoiver 2

A o N eurosoiver 1

N eurosoiver 3

Figure 39. Parallel processing.

D ist r ibu t ed  r e p r e s e n t a t io n  a n d  the  n e u r o so l v e r

Not every problem can be divided in such a way that nice hierarchies may be used in the 

search for the solution. Usually, some non-iinearity is involved, so the use of the 

neurosoiver as described in the previous section is not possible or difficult. Actually, the
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same has been observed in the human brain. Luria’s models of information processing are 

\ery illustrative, but they do not constitute a complete description of the processes 

occurring in the cortex. It has been found that in addition to the pathways that 

accommodate the hierarchical view of the processing, there are other connections that 

indicate a distributed nature of the processing.

T h e  neurosoiver  cou ld  be used to process  informat ion that has  a d ist r ibuted form,  like in 

the ex am p le  in Figure  40.  Kach stale in the overal l  d o m a in  4/ . a point  X c ' P ,  is ac tual ly  a 

vector o f  three states • each f r om a d i fferent  sub-domain:

X = (X j . X : . X < i. whe re  Xj€ T ,

There  is a neu rosoive r  for each o f  the sub-dom ains  4^ .  An abs tract  X is act ivated w hen 

X | .  X :  and X ;  are act ivated at the same t ime.  Each o f  the c o m p o n e n t s  m ay  be a part  o f  

tw o  di fferent  vectors,  points  in the main  domain .  Such a representa t ion is m ore  co m p ac t  

that  one  involving only  one neurosoiver  for the dom ain  4* wi th a co lumn for each state 

X. An abst ract  call tree in the dom ain  4* involves ,  in fact ,  three call t rees in each  o f  the 

sub-domains .  An e x a m p le  o f  such a tree is given in Figure  40.  T h e r e  are three points 

involved A. B and C. that  are in fact three  vectors:  (A1.A2. A3). (B-|. Bg, B3 i and 

<C-|. C2. C3) ot  points in the sub-d om ains  - c o lu m n s  in each o f  the three neurosolvers .  

Th e  call tree A-B-C. t rans lates  to three call t rees,  one  in each of  the neuroxolvers : 

A-j-B- | -C- j. A 2 *B2 _c/ 2  and Ag-E^- C 3 .
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Ci

N eurosoiver 1 N eurosoiver 2  N eu roso iver 3

Figure  40. A neurosoiver  in a d is tr ibuted representa t ion envi ronm ent .

T h e  reader  should  note,  that to use the neurosoiver  in such a co nf igura t ion,  it is necessary 

to have a com plete ly  in terconnected version of the model .  Th is  is needed because the 

associa t ions  between the points in d ifferent neurosolvers  will usually he in conf lict  with 

the topo logy  mapping.  It m ay  not.  d ieretore.  be poss ible to  crea te  <"dl t rees that connect  

each co lu m n  only  to its neighbors.  S o m e  pat terns  may require a distal  co lu m n  to he the 

next  node in the tree. Addi t ional ly ,  each layer of  a mul t i lay er  neu roso iv e r  must  be 

com ple te ly  connected with a neighboring layer.  In Figure  4b <'ach co lum n  in layer I is 

connected to every  column in layer 2. S imilar  connec t ions  are in p lace  between iayer 2 

and layer 3. The  conn ec t ions  between co lum ns  in layer I ami 3 a ;e  not needed m this 

case.

Th e  use o f  hiera tchies  and dist ributed representat ion has not been actually tried in the 

s imulator .  In the author ' s  opinion,  however ,  those concept s  are very  impor tant  and seem 

to he natuia l  for more  co m plex  app l i ca t ions  o f  the neurosolvei,

St haul ufCar/ ipui rr  S, iciivt Cu t l f i an  I n i n ’t s i t \
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N e u r o s o l v e r s  a n d  a r t if ic ia l  in t e l l ig e n c e

The neurosolver is a learning machine that learns from examples. The examples in diis 

case are temporal patterns that are supplied hv the sensors or by the operatoi. Un

learning uses a self-organization algorithm. There is no teacher, so the patterns are 

recorded and generalized without any heuristics to check their correctness. Hu* 

neurosolver will learn a bad behavior in the same way as u good one.

The examples can be treated as cases that are being stored as references for fuithei 

computations. In that respect, the computing performed by the neurosolver resembles the 

case-based reasoning paradigm. The searches correspond to the retrieval of the iciated 

cases that are used to infer the right response to the posed problem. The search has a 

breadth-first nature and is performed in a distributed anti hierarchical manner, Figme -41 

illustrates an example of case-based reasoning exhibited by the neurosolver.

Q
O O O

o  o \ o  o  o  
o o o \ o  o 
©+#*© cnao
o o
o  o  o m + w o  

O B + m o o o 
«r o o o o o

M IV VI

o
© o o o o o
o  o  o  o  o  o
0  0  0  0 . 0  0  
0 -0 - 0  0  o  o  
o  o  o  o  o  ®

o  o  o  o  o  o
0  o  o  o  o  o
@ o o o o o

1 8 IN IV V VI

G K I O  O O O 
o  o q j o  o  o  
o  o  o \ o  o

o
o  o  o
O O O JXT o
O  ( K J  O  O  O  

( 3 0  0  0  0  O
IB IV VI

Figure 41. Case-based reasoning in the neurosolver.

The context of the example might be a diagnostic system with several levels of tests tl- 

VI). In part (a) of the figure, several cases are stored that lead to node A. A might be a
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fault in the context. The paths from X, Y or Z to A might represent various repair 

services depending on certain condition at the first and, perhaps, at higher diagnostic 

levels. If th'- fault A occurs, like in the part (b) of the figure, the call tree is generated 

with the leaves being the nodes at level t. If one of the leaves is activated, e.g.. Y in the 

example, then the chain leading to that node fires as illustrated in the part (C) of the 

figure. That might generate a repair advice, including the requests for additional 

diagnostic tests if at some level the activity is too low to fire any column. All activated 

columns that might fire are included in such request. After the test is done, one of the 

involved nodes fires and the proper path is continued. It would be advantageous to use a 

netr t. • er with completely inter-connected nodes between two neighboring levels. A 

simulated version could lie optimized by providing of an algorithm that removes the 

connections that never are utilized.

i ’he collection of call and action trees can also be treated as a production system. If each 

temporal pattern is viewed as a series of condition-consequence pairs, then what the 

neurosolver encodes are rules. Each call tree corresponds to backward-chaining. Firing of 

a column implies that one of the condition has been satisfied; firing of a branch 

represents a match. A mixture of action and call trees may constitute forward chaining. 

An example of forward chaining with the use of call and action trees is shown in Figure 

42.

•SV/i.'i'/1' / (  'onijm hr Si t i ruf .  CtirU'ion I'tu w rsits’
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Figure 42. Forward chaining in the neurosolver.

The rules corresponding to the A-B-C action chain Fire, because the columns A. B and C 

fired. The strength of the connection between C and D is sufficiently strong to liie D as 

well. The connection from C to F is too weak (F does not belong to the action tiee) to 

cause the Firing of column F, but it is enough to excite its upper division. A call ttee 

spreads from there that may be triggered by an activity is some leaf. S  in the example, 

causing the corresponding sub-tree (S-T-F) to fire. That ultimately leads to firing ot F. 

so any action tree that starts from that node, F-G-H in the example, will Ix* activated. 

That might be treated as a continuation of the action started at A and the call tree that was 

rooted in F represents matching.

Co m pariso n  with B urnoo 's  network

The last section of Chapter 3 is devoted to the comparison between the model of the 

cortical column presented in this thesis and the model proposed by Burnod in |7 | and |2 |. 

In this section, the respective networks are also compared.
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From a practical point of view, the network as described in Burnod's original work is of 

no use, because its design is driven by the biological data and the need to explain certain 

capabilities of the cortex. Although the descriptions of how to create call and action trees 

are presented, there is no explanation of what type of network and connectivity to choose 

initially. Burnod describes how the cortex works, so all pathways are taken for granted, 

as indicated by the research data. There are attempts in the first two parts of research 17) 

to explain how the brain grows, but at this moment such descriptions are of no practical 

use.

Burnod's coworkers present some practical applications of his model in [2]. The network 

that they use is hard-wired. The arrangement of the modules is based on the connections 

between the cortical columns and areas in the parts of the cortex that process visual 

information. There are several sub-networks that correspond to the hierarchies in the 

visual cortex. Each module has:

• a number of internal input-output connections with the neighboring units in the same 

area,

• a number of internal input-output connections with other areas,

• an external output which is either a feedback or a response outside the network and

• the external input that is either a stimulus or a feed forward input from other maps.

The external connections are organized in continuous overlapping receptive fields.

That network was used for pattern recognition. In the course of learning, a pattern is 

presented on the input (the retina) and the classification area has all modules inhibited 

but one. i.e.. the module that represents the classification of the pattern. The activity is 

allowed to spread in both direction, i.e., from the retina to the primary area, to the

Sehot’l o f  Com puter S cw n er. Carleton V m versttv
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secondary' area, and on to the tertiary area and from the module representing the 

classification of the pattern in the reverse direction. After the connections are modified 

according to the rules explained in Chapter 3. the next pattern is presented. During the 

recognition process, an unknown pattern is presented on the retina ami all modules in the 

classification area are set to E1 (the states were defined in Chapter 3 ). The call trees are 

generated and one of them is triggered. As a consequence, one of the classification 

modules gets activated at the E2 level and suppresses the remaining modules in that area 

by inhibitory interactions. The pattern has been recognized.

The approach to network design taken in this thesis is diametrically different. Ilie 

connections are arranged in regular patterns, so modularity and generality can ix* 

achieved. It would be impossible to use the network presented in | 2 | in other than pattern 

recognition applications. The neurosolver aims at being a general problem solver.

The learning of the neurosolver is also in deep contrast with the learning that has tx-en 

described above. This incarnation of Burnod’s network is a pattern associator, while the 

neurosolver learns the behavior of the system by observation.

In summary, Burnod’s original work contains many ideas that were implemented in this 

thesis. The subsequent attempts by Bur nod and his colleagues to materialize the ideas are 

not equally impressive as his former attempt. The work on this thesis started Irefore their 

results were published. Hence, there are many differences not only in the details of the 

implementations, but also in the general frameworks.
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CHAPTER 5 

A neurosolver workbench

O verview

It would be very difficult to discover the behavior of the model presented in the previous 

chapters without a proper user interface. It would be particularly difficult to observe the 

changes in the state of the nodes of the neurosolver. There are many connections, so 

every change to the level of activity of any column results in large propagation trees. It is 

even more difficult to trace when a number of nodes is changing in parallel. To ease the 

task of setting and modifying the neurosolver's parameters and observing the changes to 

the activity propagation schemes, a testing/modeling workbench has been implemented.

Smalltalk-80 was chosen as an implementation platform for several reasons. Smalltalk-80 

is an object-oriented language, so it is convenient as a modeling tool. The polymorphism 

provides a mechanism for working with multiple model alternatives, so testing various 

models of an object is easy. The same may be said about inheritance - subclasses of the 

class of the model object can be used to test behavior nuances with the same common 

core behavior. Last but not least, the user interface is relatively easy to build after the 

learning curve has been overcome and thereafter easy to modify and maintain. Also, an 

important factor was portability. Smalltalk-8 t) has been ported to many platforms and
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ensures that the image can be interpreted by the virtual machine on any of the supported 

platforms. An IBM PC done was used for development, while the School of Computer 

Science of Carleton University uses mostly Apple's MACs in the graduate labs.

Figure 43 shows the main display of the neurosolver test workbench The left side of the 

window displays the matrix of the neurosolver's columns. The number of columns that 

are displayed depends on the size of the neurosolver. Each column is represented by two 

circles that correspond, in turn, to two divisions of the column: lower and upper, lire 

workbench permits the pattern of activity of the neurosolver to be set and observed. The 

activity of each division is expressed by a shade of gray. Seven levels of activ ity have 

been chosen, because Smalltalk provides that many built-in bitmap patterns. There are, 

therefore, seven thresholds of activity when the color of the division changes. In 

addition, each column, as well as a division, may be examined and/or altered separately 

through the use of the Smalltalk's inspector.

O O 9 O O O O 
Q Q Q <9 Q Q Q
0 0 0 9 0 0© 
0 0 9 0 9 0 9
©C\©0©9© f t e t p t t M n

0 0 0 0 0 9©
0 0 0 0 0 0 9

" ■ ;  ■ '  "I pool
O O O O O O O

V J

Figure 43. The neurosolver testing workbench.

The right side of the window contains several control buttons. There are buttons provided 

to change the mode of the neurosolver operation from learning to performing to a mix ol 

both at the same time. Those buttons are exclusive switches, i.e.. only one can be selected
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at a time. The remaining switches are action buttons that control the process of 

computing.

S tarting the workbench

The workbench is started by sending createAs:size:l@arningMode: to the class 

Neurosolver. The first parameter indicates one of the three connection schema that can 

be chosen when instantiating the neurosolver. The initialization method accepts the 

following architecture requests:

• #simpleMatrix, only the neighbors along the North-South and East-West lines are 

connected,

• #matrix, all neighbors are connected,

• #completelyConnected, all columns are inter-connected.

The second parameter in the method indicates the size of the matrix expressed in the 

number of columns per each side. The third parameter indicates the desired learning 

mode (described further in this chapter). The selected size and architecture cannot be 

changed after the workbench has been instantiated. The learning mode can be altered.

For example.

Neurosolver createAs: #completelyConnected size: 7 learningMode: #probabilistic

will instatiate a neurosolver consisting of 49 completely inter-connected columns and 

open a window with the workbench for that instance of neurosolver. The probabilistic 

learning schema will be active initially.
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S imulating parallel pr o c essin g

Ideally the neurosolver should be a multiprocessor VLSI device, with each processor 

modeling a cortical column. Parallelism would be a natural mode of operation, assuming 

that the input and output are folded into the same paradigm (i.e. all simultaneous 

sensations are transmitted at the same time). In the software implementation that parallel 

character of processing must be simulated.

The operation of the workbench is divided into several phases. Before any processing can 

take place, the user has to decide about the mode of operation and type of the learning. 

That is described in the following sections. After that has been settled, the processing 

loop is entered. With the help of mouse buttons, the thalamic and cortical inputs of any 

column can be changed. Many columns might be selected depending on the needs. Next. 

B ^ B B O I ' s selected to trigger the recalculation of activities of all columns. New 

activity levels are posted to connections as action potentials, so they can lie used in the 

next step to propagate the activity throughout the network. At this point, the user can 

enter another activity pattern of the sequence being presented. If the sequence has been 

completed, the user can select E 9 B B D  to inform the neurosolver about !h<- new 

pattern. Pressing that button does not clear the sequences that have been already learned 

(i.e. the weight parameters of the connections are not reset).

To completely reset the neurosolver, so a new set of sequences can lie presented, the user 

can use B B S .  That reset not on*y l^e act'vd>es’ action potentials and thalamic 

inputs of all columns, but it will also reset all parameters that are used to calculate the 

strengths of the connections.

E B B  should be used to quit the simulation session. There is a need to do some garbage 

collection after each session, so it is not possible to close the window using the title bar 

menu's Close that is the standard way of closing windows in Smalltalk.
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Mo d e s  of operation

The neurosolver can be run in one of the three modes of operation: learning, performing 

and a mix of both. Each of those modes can be set by pressing a button with a respective 

description.

Perform ing 

I Mixed In the learning mode, the neurosolver adjusts the strengths of its 

connections in the direction (i.e. plus or minus) and by the amount depending on the 

changes in the activity pattern, as described in die previous chapters. That mode is used 

when learning phase must be separated from the performance phase.

There are two learning schema that can be used by the neurosolver: probabilistic and 

hebbian, as indicated in the description of the model. The schema can be activated by 

selecting an entry in the workbench menu that displays the schema that is not currently 

used. If that schema is selected it becomes the active one and the label in the menu is 

changed to another alternative as illustrated in Figure 44.

inspect Module Inspect Module
Inspect Upper Drvistor 
inspect Upper Outputs 
Inspect Upper Inputs

Inspect Upper Dnriuor 
inspect Upper Outputs 
inspect Upper Inputs

Inspect Lower Division 
Inspect Lower Outputs

Inspect tower Division 
Inspect lower Outputs Figure 44. The workbench popup menu.

In the learning mode, the neurosolver learns the sequences o f the firing columns. In a 

biological equivalent of the neurosolver, such signals would be coming from the 

environment via sensors and thalamus (only the olfactory system is an exception to this 

rule). There are various thalamo-cortical tracts and all of them era! up somewhere in the 

cortex with connections to individual neurons of a column or, usualiy. many columns. 

That is simulated in the workbench by pointing with the pointing device to the specific 

column and using the left mouse button (the RedButton in Smalltalk-80 jargon) to
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increase the thalamic input to a maximum, as illustrated in Figure 45. That will cause the 

column to fire when the recalculation is requested.
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Figure 45. Using mouse to simulate thalamic inputs during learning.

To recover from mistakes, the right mouse button (the YellowButton) can lie used to 

reset the thalamic input of the column.

After pressing B S B  that instructs the neurosolver to recalculate and propagate the 

patterns o f activity, the active teaming schema is applied to modify inter-modular 

connections as described in Chapter 4.

team ing

Mixed j
iThe performing mode can be used to test the behavior of the

neurosolver after learning, or in other words to use the neurosolver to compute solutions 

to problems in a given domain. It is useful for the case when further adaptation (learning) 

is not required or desired. In this mode, it is possible to change the thalamic inputs of the 

columns, reflecting the current state of the environment (perception), and cortical inputs, 

representing goals to satisfy. The mouse buttons can be used as illustrated in Figure 46. 

Pressing a mouse button alone increases the value of the respective input; using the 

mouse button with left Shift button decreases the value of the input.
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Figure 46. Using the workbench for computations.

To solve a problem, it is required to activate a goal. As explained in Chapter 4, a goal is 

presented by activating the upper divisions of the columns representing the desired state. 

That is achieved by increasing the cortical inputs that may represent, for example, wishes 

coming from the limbic system. The current state is set by activating the thalamic inputs 

of all involved columns. The color of the column representing the goal changes 

depending on the activity applied.

Depressing Hm U h HH causes recalculation of the activity and propagation throughout 

the network. A call tree, as described in Chapter 4, is constructed. The call tree can be 

observed by changing colors of the columns involved. If a column fires, its color changes 

to black. It may trigger other firings, so the solution path to the presented problem is 

marked by columns changing the color to black.

Note, that the firing columns represent the output of the neurosolver, that could be used 

to modify the environment. Any change to the environment would be, in turn, feed back 

to the neurosolver via the sensors. The person interacting with the workbench simulates 

that behavior. If certain columns are assigned the labels representing the concepts or
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features, then a shade of gray appearing at any of those columns may Ix* a question for a 

clue. The labels o f the columns that went black, constitute the solution of the problem

he mixed mode, in which the neurosolver solves the presented 

problems according to the knowledge that it learned in the past, but still adapts to the 

changes in the environment. The behavior that the neurosolver exhibits in this mode is 

very close to the beh vior of biological systems. However, continuous adaptation is not 

always needed or even desired in engineering applications.

The use o f the workbench in the mixed mode does not differ from the performance 

mode. The only difference is that after recalculating the activities of the columns, the 

neurosolver adapts the weights of all connections to reflect the last observed pattern.

In s p e c t in g  t h e  n e u r o s o l v e r

The workbench provides the means not only to observe the changes in the activities of 

the columns via the graphical user interface, but also to inspect internal states of the 

integral parts of the neurosolver. The menu that can be invoked with the middle mouse 

button (the BlueButton) is shown in Figure 47. It contains several entries with which 

many aspects of the neurosolver, an individual column, division or connection can he 

examined. After selecting any of the menu entries, the cursor changes to a crosshair and 

the systems waits for the user to point to the desired column. After that has been done, a 

Smalltalk inspector window is opened for the chosen item. The inspector can Ix* user! to 

display the current values of the item, its attributes or related objects as well as to change 

any of those values.
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In̂ frrtrJ lJ|/p*r inpob>
inspwK-t Law^r Ufvr^Kir* 

lo#w OsApuH Figure 47, The inspector menu.

Selecting inspect Motfuie

aspect Upper c-v^c

opens an instance of the inspector for a column object. With 

and { B B m K m B B  the state the upper or lower division can 

he viewed respectively. QgSBNM aMM S and

open inspector windows for the collections o f outputs and inputs of the upper and lower 

divisions respectively.

The neurosolver  param eters

There are a number of system parameters that can be set before running the neurosolver 

workbench. The following parameters can be modified during initialization of the 

Division class:

• LowActivityThreshold, used in learning to determine whether the column is 

inhibited,

• HighActivityThreshold. used in learning to determine whether the column fired,

• LowerUpperThreshold. when exceeded the lower division inhibits the »er 

division and the whole column,

• LowerThreshold, when exceeded, the activity of the lower division is sent as an 

action potential on all of its outputs.

LearningRate can be modified in the initialization of the Connection class to set the 

desired rate of the learning in the hebbian mode.
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Other constants used throughout the system can also be modified, but usually that would 

require several other related modifications.
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CHAPTER 6 

The rat, the maze and the neurosolver

Overview

Kats running in mazes are commonly used in research labs to test various aspects of 

intelligent behavior. In this work, a simulated rat maze has been built to try the 

neurosolver as a simple brain of an artificial rat running in the maze. The maze is shown 

in Figure 4X.

fee*

n

Ret I food

Run Rat

Go*

Reset I Quit

Figure 4X. Rat maze with rat controlled by a neurosolver.

The maze windows consists of two parts: the maze itself and the area with the control 

buttons. The maze is a two dimensional matrix of a customizable number of elements.
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squares, with some sides of the squares, maze's walls, erased. When the walls are 

missing, the neighboring squares become the successive steps of the same path; i.e., the 

rat can move from one square to another. There are two objects that can be positioned 

somewhere in the maze: the rat and the food, a piece of cheese. The food is stationary, 

but the rat can move from one square to another -  if there is no wall between the squatev 

The rat's movements are controlled by a neurosolver. Each square of the maze is assigned 

a column of the neurosolver. It is assumed that the rat can perceive the walls, therefore it 

will choose only valid movements. The neurosolver obtains the goal signal to get the 

food as a cortical input ("hunger" + position of the food) and detects the current position 

of the rat (thalamic inputs). The rat runs, when instructed, until the food is found.

The maze can be constructed in many ways using the maze construction buttons. The rat 

can be controlled by the second set of the buttons. When the rat is running, it may learn 

selected) or may have the learning capability disabled < E B B H  elected). 

I atKj B H B  arc exclusive switches (Smalltalk's OneOnSwitch).

B uilding the maze

To set the maze to the construction mode, it is necessary to press B S S H E ^ S ^  This 

mode is exclusive with the running mode: i.e., only one of QBfflBBB f lH H i 
can be set (OneOnSwitchused again). One of the construction buttons, B 5 f l <  B O H  <>r 

B B S !  must be selected as well. By default, is selected initially. In the wall

construction mode, the cursor changes to a little picture of a part of a brick wall. The 

cursor can be used to erase or create walls of the maze squares. Initially, all walls are 

present. An existing wall can be erased by clicking the right mouse button (the 

YellowButton) on the wall. A wall can be posted by the same action applied to the left 

mouse button (the RedButton). Distances from the cursor position to all possible wall 

locations are calculated and the minimal distance indicates which square is affected.
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After E H  is selected, the cursor changes to a small picture of a rat indicating the rat 

placement mode. The position of the rat can be changed by clicking with the left mouse 

button (the RedButton) inside one of the maze's squares.

The position of the food can be changed by exactly same action with I S H  selected. 

The cursor has a shape of a piece of cheese in the food placement mode.

m m  aiK* I B B  are us well exclusive switches (OneOnSwitch). 

C o n t r o l l in g  t h e  r a t

After constructing the maze and positioning the rat and the food, the rat is ready to begin 

its search for the food. To turn the running mode on, I f l B B i  should be selected. The 

two buttons that are attached to B & E O I  can be used to control the rat. Pressing 

causes the rat to move one position. After making the move, the rat stops waiting for the 

next signal. If E 9 I  is selected, the rat starts to move and stops only after the

food is found. Control-C can be used to break the movement, if the maze has been 

constructed in such a way that it is not possible for the rat to find the food.

The rat can run by itself depending on its expertise or can be guided by the pointing 

device. In the first case, several strategies have been tried. They can be chosen by simple 

modifications to the Smalltalk code. The simplest strategy, but probably the closest to the 

natural behavior, is to use random direction of the movement with the only restriction 

that the rat cannot move backwards to the position from which it moved before. That 

randomness is applied only if there is no memory of the past experience. If that is the 

case, the rat moves to the square with the strongest activity in the neurosolver's columns 

associated with the neighboring squares. That strategy has been chosen as a default.
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Another strategy is an algorithm that guides the rat to systematically visit all allowed 

squares: i.e.. all paths are taken until the food is found. That applies only in case when 

there is no activity in the columns associated with the neighboring squares. As before, in 

such a case, the rat moves toward the highest activity. This strategy does not possess the 

same biological appeal as the former.

The rat can also be guided by the pointing device by the operator. When *s

selected, the cursor changes to a picture of a hand. Clicking the left mouse button (the 

RedButton) with the cursor positioned in any square that is a neighbor of the square in 

which the rat is currently located, instructs the rat to move to that location -  assuming 

there is no wall in the way. The activity of the columns associated with the neighboring 

squares is not taken into account in this case.

The last control scheme is analogous to the learning techniques with a teacher. In the 

former schema, the learning is self-exploratory. The learning with a knowledgeable 

teacher is faster, because many paths that are irrelevant need not to lie visited. Both 

algorithms for automatic control guide the rat into all possible paths, therefore the 

learning takes much longer.

Co nclu sio n s from the rat experiments

In the course of the experiments, it has been proven that the neurosolver can control the 

rat in the maze, assuming that the mapping is in place. The mechanism of a call tree is 

used to spread the activity from the position of the food (the goal) into every direction 

that has sufficiently strong intcr-columnar upper-upper connection. The purpose of the 

call tree is to search for the current position of the rat. A time-out is used to move the rat 

in cases when no path exists yet between the current position and the goal. When there is
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such a path, the rat moves toward the food until it is reached and. of course, devoured. 

Depending on the distance from the food, the learning can be faster or slower.

After learning one path, the rat was moved into another part of the maze. Another path 

has been learned in the same way as the first one. The same process was repeated for 

many initial positions of the rat and fixed position of the food. After that, the rat was able 

to determine the proper path much faster, even if started from a place that had not been 

tried before.

When the position of the food was changed in the next series of experiments, sometimes 

it was easier for the rat to find the food, because parts of the paths that had been learned 

before could be used. Usually, however, a new learning session has to take place before 

the rat is efficient again.

The conclusion from the experiments with the rat and the maze is that the neursolver 

used to control the rat learned the orientation in the maze. Sn that respect, the behavior of 

the artificial rat is similar to the capabilities of healthy live rats running in mazes. 

Experiments in which healthy rats are competing against rats that were decorticated have 

been designed to show that such capability is provided by the cortex.

The rat maze is a very simple application of no practical use. The capability to create 

topology mappings is at least as important for a rat to run in a maze as the capability to 

record trajectories. In the next chapter, the capability to create topology mappings will be 

considered as a possible enhancement to the model.

During the experiments with a running rat, several improvements to the model became 

evident. The most important were:

* the ability to recognize paths w ithout an end, so the rat does not follow them,
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• collapsing the learning and performance phases, so the model is closet to its 

biological counterpart, and

• preventing self-exciting pairs of columns.
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CHAPTER 7 

Conclusions and directions for further work

An artificial column presented in this woik exhibits very interesting behavior when 

applied en masse in a proper way. In the opinion of the author, it is worth to pursue the 

research. There are many shortcomings that must be dealt with before the neurosolver 

can be used in any practical application. Much more research will be needed before the 

neurosolver reaches its ultimate capabilities as envisioned in Chapter 4. In this section, 

the deficiencies are described and future plans for overcoming some of the problems and, 

generally, improving the neurosolver are indicated.

In a d e q u a c ie s  o f  t h e  m o d e l 

Architecture

Burnod's upper-upper connection proved to serve well as the basic element of the model 

that provides the capability to create a call tree. However, the ability to create action trees 

required to modify Burnod's model. The lower-upper connection that has been added to 

the model serves that purpose. The interactions between the upper and lower divisions 

had also be implemented to provide a firing mechanism.
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A completely interconnected network is difficult to simulate in software because of the 

large number of computations that are required. The model that is connected along the 

vertical, horizontal and diagonal tines requires that the columns of any pattern must bo 

neighbors in the neurosolver. Otherwise, there are no connections, so the pattern cannot 

be learned.

Learning rules

The learning rules that use simple probability appeared to be too weak to develop more 

complex behavior in a regularly interconnected network. Their complexity was increased 

to include more statistical factors and additional probabilities were defined. A formula 

for the strength of a connection that uses a combination of the probabilities proved to Ix* 

better to record temporal relationships. The modified rules proved to be suitable for tlx* 

basic features of the neurosolver, i.e. creation of call and action trees. They were 

relatively easy to implement, because the neurosolver is simulated in software.

The hebbian learning tried in the model proved to be much weaker than the probabilistic 

learning. The hebbian learning uses simple rules that modify the strength of a connection 

by an amount that is a function of the previous strength and a constant. If the constant is 

small, die learning is slow. If the constant is larger then there are many action trees 

created quickly. From the computational point of view action trees arc less desired than 

call trees.

Oscillation

A mechanism that prevents two columns being self-excitatory had to be built. Without 

such a mechanism, if one of two columns that are neighbors in two different call trees 

that spread in opposite directions sends an action potential to another, then the latter 

responds with the same signal. That happens because the activity is prone to spread in the
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opposite direction along another call tree. Although initially the signals are lower than 

the firing threshold, they are amplified in an oscillating loop and finally both columns 

fire.

Cycles

Although the mechanism that prevents a self-excitatory pairs of columns was 

implemented, it is still possible to have sequences that generate larger cycles. If one of 

the the columns gets activated, the activity spreads to all columns in the cycle. H ie 

columns in the cycle will be sending stronger and stronger action potentials and, finally, 

some of them may fire.

System stability

The neurosolver is not guaranteed to stabilize after some activity is applied. Usually, the 

system stabilized if small number of sequences were stored. However, if there are many 

overlapping trees, than the equilibrium might not be achieved at all. The neurosolver is 

not formalized enough to attempt to find the rules that govern its stability.

By applying the anti-oscillation mechanism, improving the learning formulas and adding 

the shutting down mechanism after a column fires the stability was improved.

Limited storage capacity

The behavior of the neurosolver is much closer to the ideal if only a small number of 

patterns are recorded. When that number grows and, additionally, there are many 

overlapping trajectories registered, than the system computing capabilities deteriorate.
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Fixed thresholds

All thresholds are fixed in the model. They were chosen through experiments. It is still 

not certain what activity levels should be used, for example, in a call tree or in the 

trigger. Some call trees require higher activity in the root than others. That might In

consistent with biology, but the use of activation levels in the neurosolver requires 

further investigation.

I/O system

Any column in the network contributes to the I/O system of the neurosolver. Usually, 

that is neither desired nor required. However, there is no mechanism in the model that 

would provide an adaptable I/O system.

Software implementation

A software implementation is a convenient way to simulate the behavior of the 

neurosolver. However, it is very inefficient due to the large number of connections to 

manage. Another deficiency of the simulator is that it is implemented on a sequential 

computer, so the parallelism is artificial.

D irec tio n s f o r  f u r th e r  w o rk  

Learning schema

The hebbian modification rules used in this work were very simple. To be a viable 

alternative to the probabilistic rules, they would have to be extended to include more 

important parameters that do influence the associations between columns, like the decay 

and inhibition factors. It was suggested earlier that it would be possible to implement a
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hebbian equivalent to the probabilistic rules that were used. That work needs further 

exploration. There are many formulas used in the theory of classical neural networks that 

should be tried be tried.

In the model presented in this thesis, the action potential is active only for one step, a 

tick, of the simulator. It would be beneficial to make the action potential last longer, so 

more distant elements of learned sequences can contribute to the activity of a column. 

The problem with using only first order action potentials is illustrated in Figure 49.

Two trajectories are learned: from column S to column A and from column T to column 

6. The patterns cross at the column X. There is neither path from column S to column B 

nor from column T to column A. However, when a call tree is activated from column A,

leads to column T and to column S. It happens because neither of the successors of the

School o f  C om putcr Science. Curleum  U n iw rsilv
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x x

Figure 49. The problem with crossing paths and its solution.

one of the branches leads to column T. Similarly, if column B is the goal, the search
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column X in any of the call trees is influenced by the nodes that precede the crossing 

point. The activity is lower in the branches to the left of column X. because the strengths 

of the connections are based on probabilities that use statistics collected during the 

learning.

If a second order action potential was used. i.e.. such that takes two simulating steps, 

ticks, to get to the receiver, than the problems would Ire overcome. The node that 

precedes the crossing point at column X, would contribute only to the successor of 

column X that belongs to the same learned trajectory. The formula for calculating the 

activity o f a column would have to reflect that influence. Each connection would have 

not one but two strengths: for the first and second order action potentials.

The idea of a second order action potential might be expanded to a general case of 

n-order action potentials. An n-order action potential accompanied by proper formulas 

for the strength of the connections might be helpful in overcoming the problem with (In

capacity of the neurosolver to store various patterns that is poor in the current 

implementation.

Use of the temporal inhibition

The modification rules for the connections were stated only for excitatory cases. Similar 

rules can be defined for the case of one column inhibiting another The algorithms lot 

that have been implemented in the model, but were not tested. A considerable amount of 

time will likely have to be spent refining and expanding those rules. The schema »<>r 

learning inhibitory relationships would be analogous to those used lor the excitatory 

connections.

The interaction between the excitatory and inhibitory rules is another area that shoi Id f*- 

thoroughly investigated.
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Adaptable columnar parameters

The internal parameters of each column were fixed in the model. Various values were 

tested and those that satisfied the requirements best were put in place. Of course, this is 

very subjective. It would he much better if all parameters were adaptable in a way similar 

to the modification rules for the connections. In that way, each column could have 

developed a behavior that best suits the representation that the column stands for. In 

particular, the firing threshold might be tuned to the overall level of activity in which the 

column is involved .

To achieve adaptivity of the columnar parameters, better understanding of the processes 

that occur inside the biological cortical column will be required.

Adaptable intra-columnar connections

The connections between the lower and upper division of the column were fixed in the 

model. That is not what happens in the cerebral cortex. The adaptivity of those internal 

connections might be important, though without further investigation it is hard to say 

what is exactly the impact of those connections on the behavior of the network.

Topology mapping using lateral inhibition

In this work, the topological mapping has been taken for granted. Another technique, for 

example the Kohonen algorithm, was suggested for the mapping. In Chapter 2, however, 

it has been indicated that there are local inhibitory interconnections between the 

neighboring columns. That inter-connectivity resembles the connectivity between nodes 

in the Kohoi.en architecture (in fact any on-center-off-surround architecture). Those 

inhibitory connections might be used to generate topological maps. That process could 

precede the learning of temporal sequences that was the subject of this thesis. More
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interesting, however, would be to let the process continue, allowing in that way 

re-mapping of the topological relationships if the environment changes. The neurosolver 

could, hence, evolve with the system that it controls.

Associating inputs with sensors and outputs with effectors

In the model, each column may receive external input and generate external output. The 

input signals are incoming from the sensory system. The output signals are transmitted to 

the effectors that may manipulate the subject system. The signals are transmitted w ithout 

any loss in their values. That is different from the equivalent biological systems. The 

afferents and efferents of each column could also be trained, so they do not have to In* 

assigned a priori and may change in time in an attempt to adapt to arising novelties, hot 

example, if the effectors were severed or altered, the neurosolver might have tried to 

utilize the resources in the best possible way.

VLSI

The neurosolver from its conception was thought to be a universal computing device. In 

that expect, it is very similar to electronic devices. Any chip can lie used in many 

applications without re-engineering it. What is required to change the functionality 

performed by the chip is just an alternate connectivity with other devices.

The ultimate neurosolver should also be implemented in hardware. Depending on the 

task and the size of the neurosolver chip, only a single module, a chip, or many modules 

would be used. If the problems that were indicated earlier in this chapter were solved, 

then the neurosolver would be completely self-programming, i.e. the interlaces to other 

devices as well as inter-connectivity between different neurosolvers would lie generated 

automatically. It would be possible to have a library nI pre-programmed chips that would
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he used in additional learning sessions during which they would accommodate each other 

and adapt to the system within which they would work.

The software simulator has three types of inter-columnar connectivity schema possible, 

hut the completely interconnected model is hard to use because of the large number of 

connections that are required to test and, perhaps, modify in each cycle. That might be a 

lesser problem in a hardware implementation. An example of possible hardware 

architecture is illustrated in Figure 50. Each node, in that example, sends vertical and 

horizontal double links that are connected with all other links. The connections are 

adaptable and assigned in the way suggested in the figure. The rows correspond to the 

columns that precede another in a sequence. For example, the connections a  and P are 

modified for the sequence B -> D. a  corresponds to the lower-upper connection between 

B and D, and P - to the upper-upper connection between D and B. The case for D —> B is 

shown as well.
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Figure 50. A possible hardware architecture for a neurosolver.

The architecture proposed in Figure 50 implements a completely inter-connected 

neurosolver. There are no simulation cycles, so every column is updated at the same 

time. It was a challenge to built such parallelism into the software simulator. It will be
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even more challenging to provide an adaptation mechanism that could be used in the 

implementation of similar functionality in hardware.

It must be noted that computing paradigm that uses connection strengths based on 

probabilities might be difficult or impossible to repeat in hardware.

Applications of the neurosolver

To employ its full potential, the neurosolver needs to be applied in more realistic and 

useful applications than the simple rat application describe.1 in this thesis. In that 

application, the feature most used was the ability to perform a breadth-llrsi search. Hie 

sensor triggering capability was not used explicitly. Another important feature, i.e., the 

partial parallel goal specification was not needed at all in the rat application.

Some of the applications that would exercise all aspects of the computational paradigm 

of the neurosolver were suggested in Chapter 4. One of them is a robot controller that 

would provide the robot with the ability to visually guide its movements. Another 

application is a diagnostic system that uses the learned trajectories relating to past system 

deficiencies and recovery routines to diagnose complex failures by dividing the problem 

and resolving each sub-problem in parallel. In a more sophisticated incarnation of the 

latter, the neurosolver would act as a controller that can learn the behavior of a system, 

so any abnormality can be detected and a correction procedure performed or suggested to 

an operator.

The neurosolver will reach its ultimate form only through enhancements that are the 

consequence of attempts to use it successfully in more and more challenging 

applications.
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APPENDIX A 

Formal neurosolver

In this appendix, an attempt is made to formalize die neurosovler as a state machine.

First, we define a Neurosolver universe to be a system:

u = < e , £ , « , m >

where C is the neurosolver £ is an environment, the system that is being watched after, St 

is a system of sensors or receptors and Tit is a system o f effectors or manipulators.

We define the Neurosolver C as:

e = < i u . « >

where It is a set of columns (nodes), that, in fact, are pairs o f upper and lower 

divisions:

T l={N| .N2  Nzl ,  N£ = ( N u £ . N l £ ):

A is the domain of the Neurosolver states:

A = ( A|. A>.. Ac. . )  

anti each state Â  consists o f the states of all columns:
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A x = ( S N i - S N 2  Sn z }- X= 1.2.3.. . .

The state of column NK- can be represented as a pair of an upper division's state and a 

lower division's state:

S nk =  (  S u n k . SL nk )•

(8 is the Neurosolver's behavior, and it consists of two functions: state transformant 3 

and adaptive function 3:

& = ( 3 ,3 )

The state transformant defines the Neurosolver's behavior as a state machine, while the 

adaptive function determines its adaptive capabilities.

) -> (* ,  JC>

where h is the state domain, and 9 is the domain of the Neurosolver'* inputs consisting of 

two components: .It , thalamic (external) inputs, and 9c, cortical (internal) inputs:

9 — ( J|, 92,93,...)

9\ = ( 9\t» 9}jc )» A, = 1, 2,3....

= ( iTNo ItN:— . iTNu >

9\c =  ( *CNo ICN’ ICNu )

Each lTNll, represents the thalamic input, and I(A,„ represents the cortical input to a 

column.

The transformant 3  can also be expressed in the following, distributed way:
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3  = ^ {T n k : * = 1 ’ 2*..*, K, Tjsjif: f An*, «^Tnk> ^CNk )  ̂( ^Nic. *?C:y© ) I 

k'm = ( <*2Cno. <*3Cmv.)

JXTurt = ( If'N<p: N<pe  %>. 71 Z) Tl<p }, X =  1, 2, 3,...

If f) = i l  (i.e. the column outputs to all others in the Neurosolver), then:

N<p = N ,

and:

k'm  = k '

There are two divisions of a column NK, and each of them has its own state: Sun k  and 

Slnk- Fach partial transformant Tn k consists of two components upper:

Tun*: ( Alnk. ^Unic. ^Tnk. «*Cnk ) ( <Mjnk. <&Lnk. k z  )

and lower:

Tlm*: ( ^Lnic. Aunic. •h'NK. kzn k  ) ( ^ U n k . ^Lnk* &C )•

Finally, for each column, we can define the following transformants:

• upper division state transformant:

S l J = T sl!( S L. S y ,  l j ,  IC>

• lower division state transformant:

Sl = Tsl t Sl . Su . It . 1c )
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• internal feedback function:

i x c  *  Ton ( Sy.  I t . Ic  )

Calculations of Tsy, Tsl and T„u usually involve a system of inter-nodal aiul inter- 

divisional connections with appropriate strengths.

The second component of the Neurosolver's behavior, the adaptive function 3, is a novel 

entity for a state machine, since it allows the state tranforniant 3 to lie altered, so the 

machine adapts to changes in the environment. If we designate 3, as the domain of the 

state transformant 3, we have the following:

The function is realized by modifications to the strengths of the inter-columnar 

connections. Similar considerations for the state transformant lead us to the following 

partial adaptive functions for each column:

FsU:2sU -» 2 sU

FsL: 3sL - * 3 sL

FoU:5oU -» 3 o U

Environment £ interacts with the Neurosolver through receptors Si and manipulators HI, 

creating in that way an external feedback loop.

Receptors supply the Neurosolver with the image of the environment.

a  = 1 ,2  A, = L^R«p, P = 1 ..B, Rap: £ ->  * |’Np, Np € %, C  Tl |

If B = Z, ie. every column receives an input, then:
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<k = { K{/: u = 1, 2...., A, Ra = L^RAN. V n  € H Ran:  6 <h>i J

Manipulators modify the environment depending on the state of the Neurosolver:

m = |  % : y  = 1,2 r , % = L ^ M 7E, e =  I..E, ^Ln* -»  C. Ne e % T I Z > % |

If E = Z, ie. each column contributes to the output o f the neurosolver, then:

m = { m* y =  >.2 r ,7R y= ^ Jm rN, V n s  n , ntn>J: ^an ^ I

Both receptor and manipulator functions are also realized by a system of appropriate 

connection strengths between columns and receptors or manipulators. They can be 

adaptive in a manner similar to the state transformant, but we have chosen to fix 

interactions with the environment.
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APPENDIX B 

Smalltalk-80 code for the model of a cortical 
column

The code that is presented in this chapter is not a complete implementation of the 

neurosolver. Only the most important parts of the model are included. Less impoitaui 

details o f  the model and the user interface are omitted for clarity.

The code does not include the Rat Maze application.
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OneOnSwitch variableSubclass: #Neurosolver
instanceVariableNames: ‘columns mode learningMode ' 
classVariableNames:" 
poolDictionaries:" 
category: 'Neurosolvers’

Neurosolver comment:
Neurosoner is a network for problem solving. It consists of interconnected columns with 
high degree of organization. The organization may be achieved by a self-organizing 
algorithm, or may be specified explicitly. Some of the columns may have additional 
external inputs (thalamic) and may output their signals outside the network 
(manipulators). Those additional interfaces are the basis for the external feedback. 
Internal feedback is realized by high inter-connectivity between the columns. 
Neurosolver may be a flat architecture, but its behavior is more interesting when some 
hierarchies are involved. Any hierarchy may be included in a flat model, but the 
architecture is easier to deal with if there are many interconnected cortical layers 
representing levels of abstraction. Such maps may be self-organized separately and 
later brought together through associative algorithms. The third step would be learning 
to solve problems.

N e u r o s o lv e r  m e th o d sF o r :  control' 

learningStep
"organizes the activity calculations and connection adjustments during the 

learning"
Cursor wait showWhile: (

self calculateActivity Pattern, 
self actualize Activity, 

self calculateModificationFactors. 

self adjustConnections.
(learningMode = #hebbian) ifTrue: (self resetlnfluenceFactors]. 
self resetAfterFiring. 
self setNextTick.
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)

performanceStep
"organizes the activity calculation scheme during the performance "

for every column recalculate activities, determine ouputs and show all tiring 
columns"

Cursor wait showWhile: [
self inhibitAfterFiring. 
self resetCurrentActivity. 
self calculateActivityPattern. 

self commitActivity. 
self propagate Activity, 
self resetCorticalfnputs. 
self setNextTick.

]
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Object subclass: #Column
instanceVariableNames: upperDivision lowerDivision upperLowerConr.ection 

lowerllpperConnection columnID neurosolver positionPoint' 
classVariabieNames:" 
poolDictionaries:" 

category: Neurosolvers'

A column is a  unit loosely based on a cortical column. It consists of two 
divisions, lower and upper, and many connections to other columns or other parts of 
the system (receptors, manipulators).
A column represents a concept or a part of a concept in the organized network. It 
connects to other columns which are somehow related to it. That inter-connectivity is 
achieved by self-organization or built-in by the network architect.

The basis for the active problem solving is an ability to generate sequences, 
since the activity representing a goal must be spread through the network to search for 
the solutions. In this model, the activity of the upper division represents a sub-goal in 
the search tree. That activity is prolonged (i.e.. the sub-goal is stacked): it ceases only if 
the columns representing its parent's goals are deactivated as well, or if the column 
fired (high activity in the lower division occurs). In the first case, most of inputting 
columns stops sending their signals (they could be themselves in the same situation as 
the column in question). In the second case, the lower division inhibits the activity in the 
upper division. There might be an action associated with the firing of the lower division, 
for example a sound or movement generation, which makes the cortex problem 
capabilities actually useful.

If the same set of child columns is the cause for firing the parent column, that 
column can is equivalent to a constant, if there are many such sets, the column 
exemplifies a variable (it is a place holder).

C olum n  m e th o d sFo r : 'initialization'

initialize
'"'initialize a column"

"create upper division"
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"The lower division transmits its activity all the time (i.e. the threshold is always 
0). Spreading of the column's activity represents the search for the solution to the 
problem expressed by that column."

upperDivision := (Division new)

initializeFor: self 
with Activity: 0

threshold: (Division upperThreshold).

"create lower division"
"The activity of the lower division expresses the degree of the satisfaction of the 

constraint (goal) represented by this column. If that degree is high enough, the sub 
goal can be assumed as achieved and the reason for the activity in the upper division"

lowerDivision := (Division new)
initializeFor: self 

withActivity: 0
threshold: (Division lowerThreshold).

"intra-column upper-lower and lower-upper connections are realized taken into 
account while computing the activity of the column"

Aself

connectTo: conn
| newConnection |

"connect the column's divisions with the divisions of the column passed as the 
parameter"

"There are two types of inter-conlumnar connections: upper-upper and lower upper. "

"upper-upper - feedback direction"
newConnection := (JpperUpper new.

newConnection initializeWith: 0 from: self upperDivision to: conn upperDivision 

self upperDivision outputs add: newConnection. 
conn upperDivision inputs add: newConnection.
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"lower-upper - feed forward direction"
newConnection := LowerUpper new.
newConnection initializeWith: 0 from: self lowerDivision to: conn upperDivision . 
self lowerDivision outputs add: newConnection. 
conn upperDivision inputs add: newConnection.

Colum n  m eth o ds  Fo r : control'.

calculateModificationFactors
“count exciting or inhibiting columns for both divisions“

upperDivision calculateModificationFactors. 

lowerDivision calculateModificationFactors. 

commitActivity
"commit the calculated activities. It has been postponed until now, because the 

action potentials might have been set incorrectly, before we know whether the columns 
fires inhibiting, in such a case, the upper division"

upperDivision commitActivity. 
lowerDivision commitActivity.

"The lower division inhibits the upper division. High activity in the lower division 
means that the subgoal represented by that division is satisfied. That happens if the 
activity of the upper division and the input from the outside (external feedback loop) 
sum up to a value higher than the threshold."

self highActivated ifTrue: [upperDivision realActivity: 0.0].

inhibitAfterFiring
"The column is not responsive for a while after firing"

(((upperDivision wasPrevHighActivated)

(if  Computer Sen-nee. Carleton University
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or: [upperDivision wasHighActivated]) 
or: [upperDivision highActivated]) 

ifTrue: [upperDivision resetlnputPotentiaisj.

modifyConnections
"if the column fires (lower division's activations goes sufficiently up) we adjust 

connections from the upper division to all columns which were highly activated betote. 
This strenghtens the preferred paths in the search tree."

self fired ifTrue:
[upperDivision outputs do:

[ connection |

connection receiver column firedBefore
ifTrue: [connection increasePositiveStrength]

]
]•

"perform the adjustments for the inhibitory connections" 
self waslnhibited ifTrue:

[ upperDivision outputs do: [ connection |

connection receiver column firedBefore
ifTrue: [connection increaseNegativeStrength]

]
]•

"all connections from the lower division to the upper divisions of columns 
changing their states are strengthen under the condition that this column was one of 
the reasons for that change, i.e. the lower division activity was previously high." 

self firedBefore ifTrue:
[lowerDivision outputs do:

[ connection |

"for excitatory connections"
connection receiver column fired ifTrue:

[connection increasePositiveStrength].

"inhibitory connections"
connection receiver column waslnhibited ifTrue:
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{connection increaseNegativeStrength]

]
]■

Colum n  m eth o dsFo r : 'state calculations'.

calculateActivity
"calculate the activities of both divisions of the column"

"Take into account previous activity of the upper division. The upper division 
has integrating capabilities"

| lower Activity |

upperDivision calculateActivity: 0.0.

"The upper division excites the lower division. Low activity in the upper division 

means that the subgoal represented by the column (or part of the subgoal, since a goal 
may have a multicolumn representation) is being searched. The activity is transmitted 
to the lower division and , if the lower column is not excited enough to fire, also to other 
columns. Other columns may also send their signals to this column, exciting it even 
more (internal feedback loop).”

"It is assumed here that the upper division's activity is completely transmitted to 
the lower division (the current activity is stored in tempActivity before it is committed at 
the end of this method)"

lowerDivision calculateActivity: (upperDivision tempActivity).

"the column fires - both divisions are high"
((lowerActivity := lowerDivision tempActivity) > Division lowerUpperThreshold) 

ifTrue: {upperDivision calculateActivity: lowerActivity].

"display the state of the column"
neurosolver changed: #displayColumnState: with: self.
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Object subclass: #Division
instance Variable Names: 'column inputs outputs realActivity curActivity 

prevActivity prevPrevActivity tempActivity threshold activityllpCount activityDownCount 
numberOfPositivelnfluences numberOfNegativelntluences 

numberOfPositivelylnfluenced numberOfNegativelylnfluenced thalamiclnput 
corticallnput'

classVariableNames: 'HighActivityThreshold LowActivityThreshold 

LowerThreshold LowerUpperThreshold UpperThreshold' 
poolDictionaries:" 
category: 'Neurosolvers'

Division comment:
This is a  class representing a cortical column's division. There are two such division 
within a column: upper and lower. They are physically the same, but their behavior in 
the
network is quite different.
The upper division is active if a concept represented by the column is searched tor. It 
the
cortex activates that division it can be read as: “is the concept A present under the 
current
conditions?”. If there are many other columns transmitting to this one, it may happen 
that the goal represented by the question is achieved. It could read as: “from the set ot 
active concepts (columns) is it justifiable to assume A?“. All those transmitting columns 
represent the sub-goals required to achieve the goal exemplified by this column. 
Something else may occur: the receptors send excitatory signals to the column which 
would be read as: "from what is known about the state of the world, the concept A may 
be assumed". The state of the external world can be understood as the current set ot 
the facts known to the system. Forcing the parent goal (or concept) to wait for all its 
sub-goals to be satisfied is similar to pushing on a stack. After the qoal is achieved (i.e. 
the conditions for that are satisfied, which better expresses what actually is going on), 
the reason for the activity of the division is gone. In our architecture it is accomplished 
by the inclusion of another division, lower, into a column.
The lower division of a column takes all activity from the upper division, and additionally 
from the outside. If the activity is high enough, the lower division send an inhibitory 
signal
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to the upper division. That signal forces the activity of the upper division to diminish (the 
goal has been achieved) which is equivalent to popping from a stack. The activity of the 
lower division disappears as well, since it came from the upper one, and most of 
associated external signals incoming to the division (from the receptors - thalamic 
system) are short, so the whole column is deactivated. The lower division send its 
signals to the upper divisions of related columns (next in a sequence) increasing their 
activity. That connection represents the direction from the sub-goal to its parent goal. If 
the signal is strong enough, the parent column fires as well.
Input signals from the thalamic system are able to activate the upper division to such 
extent
that it causes the high level of activity in the lower division as well. The column fires 
meaning that the goal has been achieved. Input signals are not persistent, so the 
activity of the column declines.

Division m ethodsF or: state calculations'

calculateActivity: value
"calculate new activity of the node with a startup value"

| inputActivity |

inputActivity := value + (self getlnputActivity).

"include thalamic and cortical inputs. The thalamic input comes from the 
sensors, through thalamus to the lower division. The cortical input comes from other 
areas of the cortex, for example from the limbic system - wishes, to die upper division" 

"Note: if learning, there are only high, firing thalamic input (learning) signals" 
inputActivity := inputActivity + thalamiclnput + corticallnput.

"assume that 1 is maximum"
(inputActivity > 1 .0 ) ifTrue: (inputActivity := 1.0].

"set the activity level to the calculated value.
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NOTE: The activity is stored in a temporary value until it is committed after detemiinig 
whether the column fires or not If the column fires, the activity of the 
upper division is set to zero, so no action potential is sent onto the outputs." 

self tempActivity: inputActivity. 
self real Activity: inputActivity.

D iv isio n  m e th o d s  F o r :  'control'. 

getlnputActivity
"scan inputs for action potentials and sum them up. Discard signals from the 

divisions which were influenced by this division*

| inputActivity |

inputActivity := 0.

self inputs do: [:connection |

(connection transmitter waslnfluencedBy: (self column columnID)) 
ifFalse: [

inputActivity := inputActivity
+ (connection strength * connection action Potential).

connection prevActionPotential: connection actionPotential.

J

]•

AinputActivity

calculateModificationFactors
"this method calculates a fan-in and fan-out of activity from the perspective of a 

single division"

j tempFanfn j 

tempFanln := 0.
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(self activityUp) 
ifTrue: (

activityUpCount := activityUpCount +1. 
numberOfPositivelnfluences := numberOfPositivelnfluences

+ (tempFanln := (self fanln)).

)

(self activityDown) 
ifTrue: [

activityDownCount := activityOownCount + 1. 
numberOfNegativelnfluences := numberOfNegativelnfluences

+ tempFanln.

]•

self setFanOut

fanln
"determine how many inputs influenced behaviour of this division*

| tempFanln |

tempFanln := 0. 
inputs do: (connection |

(connection transmitter column firedBefore) ifTrue: [ 
tempFanln := tempFanln + 1

]
]•

'Were are no cortical inputs to a lower division, so we deal with an upper division, and it 
has two inputs from every connecting column: from the lower division and from the 
upper division, so if the column fired we counted twice"

A(tempFanln / 2).

setFanOut
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| positiveFanOut negativeFanOut |

positiveFanOut := 0 . 
negativeFanOut := 0 .
(self firedSefore) ifTrue: [

outputs do: (.connection |

(connection receiver column fired)
ifTrue: [positiveFanOut := positiveFanOut + 1 j.

(connection receiver column waslnhibited) 
ifTrue: [negativeFanOut :* negativeFanOut + 1 J.

].
numberOfPositivelylnfluenced >  numberOfPositivelylnfluenced

+ positiveFanOut. 
numberOfNegativelylnfluenced := numberOfNegativelylnftuenced

+ negativeFanOut.

1
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Object subclass: #Connection
instanceVariableNames: 'prevActionPotential actionPotential 

nextActionPotential transmitter receiver numberOflnfluences weight' 
classVariableNames: ’LearningRate' 
poolDictionaries:" 
category: 'Neurosolvers’.

Connection comment:
Connection is a class representing intra- and inter-conlumnar connections as well as 
connections from and to other parts of the system (thamic and manipulation systems). 
The connection strength represents the probability that the receiver will fire if the 
transmitter fire.

C o n n e c t io n  m e th o d s F o r :  ’a c c e s s '  

strength
"return the strength of the connection“

(self transmitter column neurosolver learningMode = #hebbian) 

ifTrue: [A(self strengthHebb)] 
ifFalse: [A(self strengthProbabilistic)J.

strengthHebb
"return the strength of the connection"

Aweight.

Con n ec tio n  m eth o dsF o r : modification'.

decreaseStrength

(self transmitter column neurosolver learningMode == #hebbian) 
ifTrue: (self decreaseStrengthHebbJ 
ifFalse: [self decreaseStrengthProbabilistic],
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decreaseStrengthHebb
"decrease the strength of the connection regardless whether it is positive

negative"

weight < 0  ifTrue:
[weight := weight + 0.1 J.

weight > 0 ifTrue:
[weight := weight - 0 .1 ].

decreaseStrengthProbabilistic
"decrease the strength of the connection regardless whether it is
positive or negative"

numberOf Influences < 0  ifTrue:
[numberOflnfluences := numberOflnfluences + 1 ].

numberOf Influences > 0  ifTrue:
[numberOflnfluences := numberOflnfluences - 1  ].

increaseNegativeStrength

(self transmitter column neurosolver learningMode =-=■ #hebbian) 
ifTrue: (self increaseNegativeStrengthHebb] 
ifFalse: [self increaseNegativeStrengthProbabilistic).

increaseNegativeStrengthHebb
"increase the inhibitory strength of the connection"

weight := weight - (0.1 / (self negativelnfluenceFactor)).

increaseNegativeStrengthProbabilistic
"increase the inhibitory strength of the connection"

numberOflnfluences := numberOflnfluences - 1 .

increasePositiveStrength

School o f  Com puter Science, Carletor, V tu \ersn y
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(self transm itter column rieurosolver learningM ode --= #hebbian) 

ifTrue: [self increasePositiveS trengthH ebb] 

ifFalse: [self increasePositiveS trengthPrcbabilisticl.

increasePositiveStrengthHebb
"increase the excitatory strength of the connection"

w e ig h t: weight t ({(1 - w e ig h t) '  LearningR ate) / (self positivelnfluenceFactor)).

increasePositiveStrengthProbabilistic
"increase the excitatory strength of the connection"

num berO flnfluences := num berO flnfluences + 1.
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Connection subclass: # L o w erllp p e r 

in stanceV ariab leN am es:" 

clacssV ariableN am es:" 

poolD ictionaries:" 

category: 'N eurosolvers'.

U p p erU p p er m e th o d sF o r : 'hebbian influence'. 

negativelnfluenceFactor

| factor |

(factor := receiver num berO fN egativelylnfluenced) > 0 ifTrue: [Afactorj ifFalse:

[A1]-

positivelnfluenceFactor

| factor |

(factor := receiver num berO fPositivelylnfluenced) > 0 ifTrue: [Afactor] ifFalse:

lA1).

U p p erU p p er  m e th o d sF o r :  'a c ce ss '

strengthCausal
"return the strength of the connection"

"excitatory connection"

(num berO flnfluences > 0) ifTrue: [

transm itter activityUpGount = 0 

ifTrue: (A0.0j 

ifFalse: [A1.0].

]

"inhibitory connection"
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(num berO flnfluences < 0) ifTrue: [

transm itter activityDow nCount = 0 

ifTrue; [A0.0] 

ifFalse: [A-1.0].

1

A0.0.

str e n g th P r o b a b ilis t ic

"return the strength of the connection"

Aself s tren g th C au sa l.

"can also be: Aself strengthProbabilisticS im ple"

“can also be: Astreng th  probabilisticCom plex"

strengthProbabilisticComplex
"return the strength of the connection"

"NOTE thatalways:

numberOflnfluences <= transmitter activityUpCount 

and numberOflnfluences <= 'eceiver numberOfPositivelylnfluenced"

| ups dow ns probability 1 probability2 influenced |

"no influence"

(num berO flnfluences = 0) 

ifTrue: (A0.0] 

ifFalse: [

(num berO flnfluences > 0) 

ifTrue: (

"excitatory connection"

probabilityl := (ups := transm itter activityUpCount) = 0 

ifTrue: (0.0]

ifFalse: [(num berO flnfluences / ups)]. 

probability2 := (influenced :=

>V/.'cl'/ ct Ct’inj’uti / Sana t\ Cut lch>n ( nivci$it\
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rece iv e r  n u m b erO fP osit ive ly ln t luenced )  0 

ifTrue: [0.0]

ifFalse: [(num berO flnfluences influenced)

* (rece iver activ ityU pC ount influenced)!.

]
ifFalse: [

"inhibitory connection"

probabilityl := (dow ns := transm itter activityDownCount) 0 

ifTrue: [0.0]

ifFalse: [(num berO flnfluences / downs)]. 

probability2 := (influenced :=

receiver num berO fPositivelylnfluenced) 0 

ifTrue: [0.0]

ifFalse: [(num berO flnfluences / influenced)

* (receiver activityU pCount / influenced)].

]•

A(probability1 * probability2) n e g a te d

]■

strengthProbabilisticSimple
"return the strength of the connection"

| u p s  dow ns |

"no influence"

(num berO flnfluences = 0) 

ifTrue: [A0.0].

"excitatory connection"

(num berO flnfluences > 0) ifTrue: [

(ups := transm itter activityUpCount) = 0 

ifTrue: [A0.0]

ifFalse: [A(num berO flnfluences / ups)].

J-
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"inhibitory connection"
(num berO flnfluences < 0) ifTrue: [

(dow ns := transm itter activityDownCount) = 0 

ifTrue: [A0.0]

ifFalse: [A(num berO flnfluences / dow ns) n ega ted ].

]
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C onnection  su b c la ss : #LowerUpper 
in s tan ceV ariab leN am es:" 

c la ssV a ria b le N am e s:" 

poo lD ictionaries:" 

category : N eurosolvers'.

L o w e r U p p e r  m e th o d s F o r :  hebbian influence' 

negativelnfluenceFactor

| factor |

(factor := receiver num berO fN egativelnfluences) > 0 ifTrue: lAtac to r| ifFalse.

HI-

positivelnfluenceFactor

| factor |

(factor := receiver num berO fPositivelnfluences) > 0 ifTrue: | AfactorJ ifFalse: (A1). 

L o w e r U p p e r  m e th o d s F o r :  a c c e s s '

strengthProbabilistic
"return the strength of the connection"
"NOTE thatalways:

numberOflnfluences <= transmitter activityUpCount
and numberOflnfluences <= receiver numberOfPositivelnfluences"

| u p s  dow ns probability 1 probability2 influences |

"no influence"
(num berO flnfluences = 0) 
ifTrue: [A0.0]
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"excitatory connection" 
ifFalse: [

(numberOflnfluences > 0) 
ifTrue: (

probabiiityl := (ups := transmitter activityUpCount) = 0

ifTrue: [0.0]
ifFalse: [numberOflnfluences / ups].

probability2 := (influences :=
receiver numberOfPositivelnfluences) = 0 

ifTrue: [0.0]
ifFalse: [(numberOflnfluences 

/ influences) * (receiver activityUpCount / influences)].

]
“inhibitory connection" 

ifFalse: [
probabilityl := (downs := transmitter activityDownCount) = 0

ifTrue: [0.0]
ifFalse: [numberOflnfluences

! downs].

probability2 := (influences :=
receiver numberOfNegativelnfluences) = 0 

ifTrue: [0.0]
ifFalse: [(numberOflnfluences 

/ influences) * (receiver activityUpCount I influences)].

]■

A(probability1 * probability2)

]-
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