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Abstract

In this thesis, a neural network based on a biological cortical column is presented. The
cortical column has been found 10 play the fundamental role in information processing in
the cerebral cortex. The model of the column presented in this work displays similar
functionality. The stress is laid on the cooperative behavior of many artificial columns
interconnected in a network. The network is capable of recording trajectories of
time-related events. Those recorded trajectories let the network use such time
dependencies to perform breadth-first searches. The device can solve stimulus-response
type problems in the given domain and because of that is called a neurosolver. The
neurosolver can use a context update mechanism to perform dynamic searches. Two
important features of the neurosolver, its generality and modularity, can be used to mimic
hierarchical and, at the same time. parallel and distributed functionality of the cortex in

an artificial environment,

i
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Introduction

The human brain has always been a focal point for many thinkers who were enchanted
by the mysteries of perception, memory. recollection. abstraction and reasoning. The first

known reference to the brain comes from an ancient Egyptian surgeon who recorded a

number of cases of head and neck injuries along with their analysis. He noted with a
surprise that although the head was injured, several patients had theii moter or sensory
capabilities impaired. Those observations must have been not well received among the
contemporaries of the surgeon, since for the next twenty centuries the cardio-centric
hypothesis was preferred by philosophers. Even Socrates and later Aristotle subscribed to
that theory. although Aristotle proposed many innovative ideus in his treatises on
memory. Democritus, circa 400 BC, located thoughts in the brain that was using "psychic
atoms” to communicate with the rest of the body. Hypocrites confirmed that thesis
through thorough clinical observations. In the third century BC. in Alexandria.
Erasistratus dissected thousands of bodies mostly of criminals given to him by the kings.
That enterprise was quite cruel, since many criminals were alive when the experiments
took place, but the encephalono-centric hypothesis was enriched enormously. Later,
again the brain lost its position in the world dominated by catholic bishops. Most of the
scientists and philosophers were preoccupied with the proper position of the soul in their
treatises. and placing any aspect of the intellect in the brain was close to a blasphemy. It
was only in the seventeenth century when the encephalono-centric theories were revived

by Gassendi.

School of Computer Science, Carleton University
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The modern history of the brain research. or neuroscience as that branch ot science has

been called for several years. starts with the names of researchers like Ramon a Cayal
[27]. Broadmann [5] and Lorente de N6 [19]. Ramén a Cayal proved the neuronal
architecture of the brain. Broadman divided the brain's cerebral cortex into 52 areas
based on the micro-anatomy of the cortex and assigned a function to each of them.
Lorente de N6 put forward the principles of intra-cortical circuits of neurons. More
recent and known names are those of Hebb |13} and McCulloch and Pitts |22] who
contributed to the field or ncural networks, although at the time they worked that branch
of science did not exist. Over the last thirty years the knowledge and ideas of the early
researchers have been enriched by scientists like von der Malsburg |20]. Szentagothai.
Mountcastle. Hubel [15]. Wiesel [ 15]. Kandel [16]. Schwartz [ 16} and others and utilized
by researchers lik= Rosenblatt [29]. Widrow [36]. Hoff [36]. Kohonen | 1¥]. Hopfield
[14]. Grossberg [10], Rumelhart [21]. Ballard [4] and many others who engineered
devices that mimic the behavior of the brain. Their contributions are enormous. There are
many excellent publications describing the past and the present of neuroscience. neural
networks and cognitive science. A two volume collection of papers edited by James
Anderson and entitled "Neurocomputing” {3} may be a good source of knowledge about

those achievements.

In spite of that enormous and common drive to research the brain, thanks to which many
discoveries have been made. many theories have been proved and muny uses of the new
knowledge have been found over several thousand of years. there iv still a sew of

unknown to be explored by the current and future generations of scientists

In this thesis, the work on a special type of a neural network based on a model of a
cortical column will be presented. The cortical column, the "module-concept”. has been
proposed as an anatomical entity by Szentugothai [31]. Later, Mountcastle (23] enriched

the hypothesis by describing the functional context of the cortical column. Today. the

School of Computer Science, Carleton Univer sy
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cortical column is widely accepted as a basic functional building block of the brain's

cerebral cortex. It has been observed in every part of the cortex, although some aspects of
its internal architecture vary from area to area. The behavior of the column seems to be
similar in every region of the cortex as is its connectivity pattern. Many neuroscientists

believe that the cortical column is also a basic computational component of the brain.

The goal of this thesis is to duplicate the model of the cortical column that was proposed
by Burnod |7} and to get better understanding of it through simplifications and
modifications. The final model used in this work will be compared with original

Burnod's model in Chapter 3 and Chapter 4.

It was an assertion for this thesis that the network in which the model of the cortical
column is used should be universal and modular. The universality would make it possible
(through the learning process) to customize the same network for us2s in various
domains, much like analogous VLSI chips can be customized for different applications.
The modularity of the network would allow several small. specialized networks to be
combined into a bigger, higher level network that could treat more complex problems.
The network should be completely or at least regularly connected. Ultnaately that

architecture should be implementable in VLSL

From the functional perspective, an attempt has been made to design a general purpose
problem solver using the model of the cortical column. The network of cortical columns
should be capable of computing solutions to problems in a given. well defined domain.
The relationships between the objects in the domain are stored as temporal data during
the learning process. The recollection mechanism produces solutions to presented
problems in a form of sequences of state change patterns. The learning phase is not
separated from th- performance phase as is the case in almost all other neural network

architectures. Instead, like in the human brain, the learning is a continuous process. The

School of Computer Science, Carleton University
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topographical relationships of the objects of tne domain were used explicitly. because the

problem of creating such maps has been set. led by others, for example Kohonen.

To test the network. or the ncurosolver as the network of cortical columns is called in this
thesis. a workbench has been implemented in Smalltalk-80. The workbench includes the
model of the cortical column and several variations of network architecture. The
workbench includes a user interface with which it is ¢asy to set the parameters and
interact with the neurosolver. but most of all to observe its behavior. The neurosolver
was also used in a simple application. a rat maze. to test some of its capabilities. The
maze is also implemented in Smalltalk-80 with a proper user interface. The descriptions

of both applications are parts of this work.

The author finds it valuable to present the basics of the functional anatomy of the brain,
particularly the cerebral cortex. and micro-anatomy and connectivity of the cortical
column before the description of the model and the architecture of the network. The
description is far from being complete. For more details the user can consult one of the
many good textbooks on neuroanatomy and neuroscience, for example by Schmitt [30]

or Kandel and Schwartz | 16].

School of Computer Science. Carlewn University
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CHAPTER 1

An insight into the human brain.

EVOLUTION OF THE BRAIN

The brain of a man, one of the most complex systems known, is the result of thousands
or even millions years of evolution. Simple vertebrates had only a simple nervous tube,
or spinal cord, that was sufficient for survival of the specie. That tube evolved to receive
sensory information through various nerve fibers and send motor signals to contract

animal's primitive muscles. It is shown in Figure 1.

Figure 1. A primitive brain - a spinal cord.

Soon. it became apparent that it is easier to move in one direction rather than in many. It
was more important now to know what was happening in the direction of the movement
than in any other, so together with the evolution of the body there was also a
specialization of the control system. The frontal. or anterior, with respect to the preferred
direction of the movements, part of the spinal cord was receiving sensory signals that

became more important than the signals from other parts of the body. That part refined

School of Computer Science, Carleton University
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Thesi T,

its sensory capabilities and the brainstem. a precursor of the human brain, was born. The

brainstem is illustrated in Figure 2 with its three parts marked.

Mesencepnalon

Prosencephalon Rhombencephaion
Figure 2. The brainstem - a precursor of the human

brain.

New challenges from the changing environment induced further development in the
motor and sensory systems. The brainstem grew, so the new functionality could be
controlled in u better, more direct manner. The frontal part of the brainstem was enlarged
by addition of two cerebral hemispheres. The back, or posterior, part evolved into the
cerebellum. Those new additions are shown in Figure 3. The cerebral hemispheres
acquired the functionality for data analysis and decision making. like movement
origination. The function of the cerebellum was to coordinate the execution of the
movement commands. All mammals have brains like that shown in Figure 3. although
the development of certain functions, and the parts of the brain supporting those

functions, varies among species.

PRt i
Cerebral hemispheres Figure 3. Mammalian brain.

Humans have the best developed brain among all mammals. The biggest change in the

relative size and functionality came to the cerebral hemispheres. The cerebral cortex

School of Computer Science. Carleton University
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evolved into the control center with the most sophisticated functionality. It is no longer

just a place where the facts are analyzed and actions generated in response. In the course
of phylogenetical development, the relatively simple nervous tube evolved into the origin

of intelligence.

ANATOMY OF THE BRAIN

Usually one thinks about the brain as being completely enclosed in the skull. In fact,
however, the brain can be divided into three main parts (Figure 4). not necessarily

located in the head:
e spinal cord,

e brainstem and
o forebrain.

The spinal cord is the lowest element of the brain that is also the oldest phylogenetically
and still fulfills the same tasks of receiving the sensory signals from the body parts and
sending the motor commands to the muscles as in primitive vertebrates. It is divided into
a number of segments with each segment servicing more or less the part of the body at
the same height as the segment. The sensory nerves that enter the spinal cord from the
back (or top in the animals, therefore called dorsal or superior) provide sensory
information. They make synapses with the neurons that will carry that information to the
thalamus and further to the cortex in the forebrain (see below). The tracts carrying the
motor signal connect to the muscle's neurons in the frontal part of the spinal cord (or

bottom in the animals, therefore called ventral or inferior).

School of Computer Science. Carleton University
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Forebrain

spinat cora™ '\,  Figure 4. Three basic parts of the human brain.

The functionality of many parts of the brainstem has not been completely determined.
Generally speaking, the brainstem handles the basic life supporting functions. In many
animals. the brainstem provides the highest level of functionality, that in better developed
species were overtaken by the forebrain, like vision and audition. There are several
entities that are relatively well understood. The hypothalamus is involved in almost all
aspects of behavior, like feeding. sleeping. sexual behavior, temperature regulation,
emotion control ard movement. The cerebellum is regarded as the center for equilibrium,
postural reflexes and coordination of movements. Another interesting part of the
brainstem is the reticular formation that has been assigned responsibility for
consciousness, general arousal and controlling basic functions like breathing, heartbeat,

body temperature. chemistry of the blood. etc.

The newest component in the evolution of the brain, the forebrain, and particularly the
cerebral cortex, is the location of what we consider to constitute intelligence. The part of
the forebrain and cerebral cortex will be described in the next sections in more detail,
since they are more important as seen from the perspective of the work described in this

thesis.

ANATOMY OF THE FOREBRAIN

The forebrain consists of the following five anatomical parts:

School of Computer Science, Carleton University
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e neocortex or cerebral cortex,
o thalamus,

¢ basal ganglia and

« limbic system,

s olfactory bulbs.

Cerebral cortex

The cerebral cortex is the youngest brain structure and the relation of its size to the size
of whole brain is the most visible diffcrence between the brains of humans and animals.
Because an average human is evidently more intelligent than an average animal, the
neocortex has been thought to be the location of that value-added functionality. Many
important experiments with animals and with humans confirmed that the cortex is the
highest level center of information processing. A.most all sensory data are transmitted to
the cortex where they are analyzed. The response to the stimulus that depends heavily on
the past experience, memory. is calculated, and the signals initiating proper action are

sent to the lower level brain structures that carry out the commands.

The nature of the information processing that goes on in the cortex is the matn interest of
this thesis. Therefore, the cerebral cortex will be discussed in detail in several further

sections of this work
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Figure 5. The thalamus and the basal ganglia: the input and the output of the cortex..

Thalamus

The sensory information, with the exception of smell data (see below), is sent to the
cerebral cortex for analysis. The pathway. however, is not a direct one. The thalamus is
the input switching system that passes the signals detected by senses to appropriate areas
of the brain. Principally, the signals are directed to the primary somato-sensory areas, the
visual areas. the auditory areas. etc. In addition. there are pathways to secondary and
higher areas, but they have relatively small throughput. The primary. secondary and

tertiary areas will be discussed later in this chapter.

The thalamus is not just a simple relay station. There are many reciprocal connections
from the cortex, that carry signals that are used to modulate incoming input data. The
data that is not important in a given context may be suppressed. and vice versa, a weak
signal that the cortex indicates as essential may be amplified. The thalamus may even be
instructed to expect certain input. so the proper action can be undertaken to diminish the

difference between the expected and actual sensory data.
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Basal ganglia

There are many basic functions of the motor system that are controlled by the spinal
cord, like the spinal reflex which ensures that as one group of muscles contracts, the
opposing ones relax. More complex movements are the responsibility of higher and
higher levels in the motor system. The basal ganglia is a part of the motor system that is.
in lower vertebrates. the highest level center for motor control. In humans and higher
vertebrates, the basal ganglia is the source of multiple signals initiating and terminating
partial movements. It uses inhibition and modulation to controi lower level motor
subsystems in the brainstem and spinal cord, ensuring that movements are smooth. It
closely cooperates with the cerebellum. that is responsible for coordination of the

movements.

The basal ganglia is the main relay station for nerve fibers going from the motor cortex

to the subordinate subsystems.

Limbic system

Initially, the limbic lobe was thought to provide olfactory functionality. because of its
connection to the olfactory bulbs. That theory has been abandoned as was the hypothesis
that there is a single function that the system realizes. It is still a long way to go before
all of the parts of the limbic lobe can be assigned a proper function. There is enough
evidence, however, to state that the hippocampus that is a part of the limbic lobe is
critical for memory storage. spatial organization, organization of mmovements, inhibition

and learning.
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Figure 6. The limbic system and the olfactory bulbs.

The hippocampus has abundant connections with other parts of the limbic system. Many
of the experiments showed that there are reward and punishment centers in the limbic
lobe. Consequently, the data processed by the brain is being weighed in the hippocampus
and the information considered worthy is stored in the memory. The data that is not
important is discarded or stored only as long as it is needed for the current task to
complete. There are no details. however, about the underlying mechanisms of that

functionality.

Another part of the limbic lobe, the septum. seems to be responsible for emotions,

something that usually is attributed to whole limbic system.

Oifactory bulbs

The sense of smell is considered to be the oldest sense that nas been mastered by the

brain. That sense was very important in the evolution of vertebrates, since it could guide

the animal to food and, as a result, increase its chances for survival. The olfactory bulbs
that are part of the limbic systemn are responsible for the smell. It is very interesting, that

the sense of smell is the only sense that is not handled by the cerebral cortex. It is
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probable, that the judgment centers developed in the limbic system because of the

proximity to the smell center. Something that smelled good was worth remembering,
while the opposite was best to forget. That might be the reason why the limbic system is

S0 important to memory.

ANATOMY OF THE CEREBRAL CORTEX

The cortex is a thin (a few millimeters), convoluted tissue that covers all lower level
brain structures located inside the skull. There is a layer of gray matter, so called because
of the high concentration of grayish cell bodies. and white matter, that is located below
the former, again so called because of the high concentration of white neuronal fibers
connecting neurons in various parts of the brain. The space between the neurons and
fibers is filled by glial cells. The function of glial cells is not definitely determined. but
most of the researchers assign them some support functions. like nutrition and waste
disposal. Neurons. interconnected by a network of axons and dendrites. are the

fundamental information processing units.

A single neuron

There are many types of neurons in the central nervous system in general. and in the
cerebral cortex in particular. The anatomy and functionality of all of them is. however,
similar. One of the most important neurons in the cortex. the pyramidal cell. is shown in
Figure 7. The pyramidal cell consists, as other neurons do. of the cell body or soma. an
axon and dendrites. The axon and the dendrites are fibers that are attached to the soma.
Usually, the axon is longer than the dendrites, because they carry signals from the neuron
to other. sometimes very distant, areas of the nervous system. Axons make connections
with somas of other neurons, with their dendrites and sometimes with other axons. The

task of the dendrites is to capture signals from the axons in the neighborhood of the
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neuron and bring them to the soma. All signals are integrated in the neuron and the

resulting integral determines the level of excitation or activity of the neuron. This activity
is. in turn. transmitted over the axon to another set of neurons where the activity

recalculation scheme is repeated.

The location where an axon make a contact with another entity is called a synapse.
There are two types of synapses: symmetric, commonly viewed as inhibitory. and
asymmetric. with excitatory nature. If an axon makes an inhibitory synapse. the activity
carried over the axon will have a negative effect on the activity of the recipient. The

excitatory synapse has a reverse effect on the receiving cell.

Dendrite

Figure 7. A neuron.

The topology of the connections that a neuron makes with other cells is determined by
the genetic code. However. the synapses are highly adaptive devices. since their

conductivity, i.e. the ability to transmit signals, may be modified. The extent of that
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modification depends on the pattern of activity in the pre-synaptic and post-synaptic
entities. If there are certain regular changes in the patterns of activity of a number of
neurons, and consequently, their synapses. then these changes may be encoded in the
pattern of conductivity or strengths of the synapses transmitting signals between the
involved cells. Later. the pattern of activity can be recalled even if only a part of the
original pattern is known. The adaptivity of the synapses is the fundamental mechanism
that the brain uses to store information and perform calculations. All artificial neural
networks that attempt to mimic the circuitry of biological nervous systems make use of

some kind of adaptive synapse. This computational paradigm is very often called

connectionism.

The details of the communication between the cells, the transmission of the signals. the
integration of the inputs and all related processes at the cellular and inter-cellular level
are fascinating. They are however not directly related to the content of this work. One of

the best publications on the subject is the book by Shepard {32].

Lateral organization

The cortical hemispheres

The cerebrum is a major mass of the brain composed of many milions of nerve fibers and
covered with the cerebral cortex. The cerebrum consists of two hen.ispheres. as shown in
Figure ¥, divided by the medial longitudal fissure!. The hemispheres are connected by
the corpus callosum, a tract of many nerve fibers that are used to exchange information
between both halves of the cerebrum. The low level functionality of the hemispheres is

similar, but they control opposite sides of the body: the left hemisphere controls the right

Iissure - a cleft in the surface of the cortex that 1s deep enough to indent the brain ventricles.
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side of the body. and vice versa. That arrangement is as surprising now as it was for
Erasistratus. Ramon a Cayal [27] attempts to explain that phenomenon by the need for
maintaining continuity of the visual image created in the brain from the signals sent by
the sensurs in the retinas Coghill {8] suggest that this anatomical arrangement developed
in the primitive vertebrates (he studied Amolystoma) that used a coil as their basic
movement. The sensory neurons on one side of the body excite the motor neurons on the
other side. so the animal can move away from any noxious stimulus. The olfactory balbs
are not crossed. the only such system in the brain, because the animal wants to move in
the direction of the food that it smells. There are other hypothetical explanations. but the

issue is far from being setlled. though.

Figure ¥. The cerebral hemispheres.

Psychologists believe that the hemispheres differ in the high level functionality that they
provide. Although 1t may vary trom one individual to another. usually the left
hemisphere is a logical brain. The processing of information in the left hemisphere has a
symbolic nature. Given a set of clues, the brain follows the logical paths that ultimately
lead to the solution of the problem. On the contrary, the right hemisphere s an artistic
brain that uses images rather than symbols. The processing of information in the right

hemisphere has a global, associative nature. The sensations that are delivered to the right
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hemisphere are correlated, resulting in a recognition of shapes, colors, sounds, etc. The

right hemisphere, however, has to contact the left side of the brain to attach proper
symbolic labels to the recognized objects. The same happens in the opposite direction. If
there is no obvious logical pattern to the resolution of the problem, the right hemisphere
might be helpful by associating facts or sensations that are not linked by any logical

reasoning.

The cortical lobes

Each of the two hemispheres of the cortex is divided into four? anatomical regions called
lobes that are illustrated in Figure 9. Although these are anatomically defined areas. they
are often used in conjunction with the functionality observed in the specific area. That is
however far from being accurate. Much better reflection of the functionality of various
regions of the cortex are the topographic maps described in further sections. The lobes

are, however, convenient orientation terms that are used commonly by neuroscientists

TRONTAL

Figure 9. The cerebral lobes.

<Sometime anatomists count the limbic system as another lobe, bringing the number of lobes to five,
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Laminar organization - The cortical layers

Neuroscientists divide the cortex into six layers. depending on how the neurons are
arranged. Despite such a generalization. there are some variations in the anatomy of
different parts of the cortex. In some areas of the brain certain layers might be thinner.
almost non-existent. while others are thicker than average. Some researchers argue that
there are more layers than six, and actually in the literature there are letters added to the

layer numbers, like [Va. [IIb. etc.. to indicate sub-layers.

There are certain functional attributes that can be associated with the cortical layers. For
example. layer IV receives signals from afferents’ coming mostly from the thalamus or
olfactory system. and is therefore considered to be an input layer. This layer is very thick
in primary sensory areas (see topographical maps below) and very thin in the motor
regions of the brain. The layers below layer IV, send efferents? to the lower brain
structures and are considered to be the output layers. That functionality explains why
they are thick in the motor areas: the signals that are generated there must be carried to
motor neurons that ultimately will cause contraction of muscles. The layers above layer

IV make connections mostly with other cortical areas,

The tracts that bring signads from somewhere cise,

The tracts that carry signals to other locations.
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Figure 10. Cortical layers.

The detailed description of those interactions will be presented in Chapter 2.

TOPOGRAPHY OF THE CEREBRAL CORTEX

Since the times of Gall and his phrenology theory®, many scientists performed extensive
studies of various aspects of the cortex trying to divide it into more or less meaningful
regions. In the course of those explorations, studies of the brain were published that
described various characteristics of the cerebral cortex. There are three topographical
maps of the brain that are widely used in the field today: functional. projection and
cytoarchitectonic maps. Although the maps are based on different research methods used.
the areas that were defined are quite similar. That seems to prove that there is a close

relationship between the anatomy, connectivity and functionality of the brain areas.

Sin shon, phrenology was a theory that centain physical characteristics of the skull (like bumps) and
indirectly the brain, can be the basis for assigning functions to the regions of the brain. Although today
that theory sounds amusing, it was the first attempt 1o create a functional map of the brain, an endeavor
that was attempted by many scientists later on,
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Cytoarchitectonic maps

Cytoarchitectonic maps are constructed by examining the cells in every region of the
cortex. Their type. density. arrangement, etc.. is taken into account. The map that is used
most often was created by Broadmann at the beginning of this century and one of its
versions is shown in Figure 11. Broadmann examined various parts of the cortex without
any overall plan. so the numbers that he assigned to the areas are a little chaotic. The
numbers are used very widely to describe the location of a function realized by the
specific part of the brain. For example, area 17 is commonly used as a reference to the
primury visual cortex, while area 41 is a reference to the primary auditory cortex (see

next section).

Figure 11. Cytoarchitectonic map of the brain.

Projection maps

Projections maps are created by tracing the efferents that leave the cortex and make
connections with various subsystems in the lower structures of the brain and by looking

for the source of the afferents carrying signals to the cortex. It has been noted that for
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each type of sense, there is an area in the cortex that receives most of the sensation

signals carried by the axons of the neurons in the sensory system. Those areas are called
primary sensory areas. The neurons from those areas send axons to secondary areas and
from there to tertiary areas. That regularity led to the hypothesis that information
processing in the cortex is hierarchical. Now, however, there is a clear evidence, that
although there are obviously hierarchies in the processing of sensory data, there are also
many additional pathways that contribute to the parallel nature of the overall
functionality of the brain. Figure 12 illustrates the main projection maps and the
pathways between the primary, secondary and tertiary areas. The primary areas are black
and the secondary areas are gray. The arrows from or to the secondary areas indicate the

tertiary regions. It is worth noting, that while primary areas are highly uniform in the

character of the incoming signals, the other areas are more and more inclined to process
signals with diversified origins. They are called associative areas (particularly the tertiary

areas), since they correlate signals from many sources.
NOTOR SOMATO-SENSORY

AUDITORY VISUAL

Figure 12. Projection map of the brain

Functional maps

The functional maps are drawn taking into account the data obtained by one or more of

the following experimental techniques:
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e stimulating cortex areas and registering what behavior is induced,

« stimulating cortex areas and registering what sensations are reported by the subjects,
o recording the activity of the cortex while performing certain behavioral tasks, or
¢ observing the changes in the behavior after cortical damage.

Some neuroscientists use animal lobotomy to register changes in the animal behavior.
That technique can hardly be classified as scientific. since it is as cruel as the experiments

of Erasistratus.

The best known functional map of the cortex is the one prepared by Penfield [24] and his
coworkers at the Montreal Neurological Institute. They were created by examining
cortices of patients awaiting brain surgery under local anesthetic. They noticed that each
part of the body responds to a stimulus applied to a specific location of the cortex. What
is more. the topology of the body is preserved in that mapping, although relative
proportions of the areas corresponding to various parts of the body disagree with the
differences between their actual physical sizes. For example, there is a relatively large
area of the cortex devoted to hands and fingers as compared to the area controlling the
trunk. That is easy to explain. There is much higher degree of precision required from the
hands and fingers than from the torso. so more resources must be devoted to command

hands.
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Figure 13. Homunculi - functional maps of the somatosensory and motor areas of the

brain.

Similar mapping of the body parts has been discovered by recording the sensations that
were reported by the subjects upon a stimulus being applied to the cortex. The areas of

the first mapping (stimuli = movement) are localized in the anterior® part of the parietal

lobe more or less along the postcentral gyrus’. The areas of the second mapping (stimuli
=> somatic sensation) are located in the posterior® part of the frontal lobe. ulong the

precentral gyrus.

Figure 13 shows a popular illustration of Penfield's observations in a form of homunculi,
little men. that are more or less symmetrical with respect to the central suicus’. That
symmetry is as important to the control of movement as the topology preserving nature
of the mappings. Both areas. motor and somatosensory areas, exchange information

during voluntary movements, so the part controlling the movement (motor areas) is

b=frontal
TGyrus - a ridge on the surface of the cortex.
¥=back

YSulcus - a cleft in the surface of the cortex that is shallower than a fissure,
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aware of the progress in the movement (as reported by the sensors sending signals to the

SOMAtosensory areas).

The region of the cortex responsible for speech: has been discovered in the previous
century by Broca [6]. That area is today called by his name. The low level speech
understanding was discovered by Wernicke [34] and is as well called by the name of the
scientist. Those areas are located in the medial'® superior!! part of the temporal lobe
(Broadmann area 41, 42). The occipital lobe is the part of the brain were visual
information processing takes place (Broadmann area 17, 18, 19). That function was
assigned for the first time by Holmes [13] who was treating soldiers with head injuries in
the WW1 and noticed that injuries to different parts of the occipital lobe cause blindness

in different parts of the eye.

GENERAL FUNCTION OF THE CORTEX

The functionality of the cortex is still not well researched. However, the following three

types of computation that the cortex performs, comprises most of the cortex functions:
» control of voluntary movements,
e pattern perception,

e cognitive mapping.

W=msddie

H=top
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Control of voluntary movements

The cortex receives the sensory signals from the thalamic afferents. That information is
the basis for determining the responses to the observed state of the environment. Any
complex action that is a part of that response is planned in the cortex. Every item is the
sequence, the schedule of the response, is sent to the lower brain structures for execution.
The functionality of some of those underlying structures was discussed briefly earlier in
this chapter. The cycle repeats itself when the sensors notice the change caused by the
response, and again report that state to the cortex. Through that feedback, the cortex
ensures that not only a proper action is undertaken, but also that it is carried out

accurately.

In tests on animals with the cortex removed. the ability to generate movements, as
complex as walking, eating, drinking, mating, is not lost. However, they are not able to
perform any of those movements as a part of an overall goal. They may carry food. but
they will not hoard it. They may perform some elements of grooming. but they do not

really groom.

Pattern perception

The sensory system is bombarded with a variety of bits and pieces of information about
the environment. That information is correlated in the cortex. The cortex is the place
where the nature of the observed changes is comprehended. Without that comprehension
it would not be possible to react properly to the incoming data. since the same singular

symptom can be a part of many, sometime quite different, syndromes.

Animals without the cortex recognize distinct signals like place and intensity of light. but

are not able to differentiate between the patterns that use those signals.
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Cognitive mapping

The question about the localization of the memory has not been answered yet. The fact is
that many things can be learned without the cortex. However, the cortex provides an
additional functionality. Cognitive maps that are constructed in the cortex during

learning. can be used later to perform actions that were not learned.

Devorticated animals perform as well or almost as well as healthy ones on tasks like
classical conditioning, approach learning, cue learning, etc. However, they are not able to
learn dependencies that are distant. and not a part of the learned sequence. If a healthy rat
learns to run from the south side of a maze to the north side, it will reach the north side
even if positioned in the west. Clearly, it had built 1 map during the learning that it uses
later on. That map is located in the cortex, since that ability is absent in rats without the

cortex. although they can learn the path from the south side to the north side.

Cognitive maps are constructed very fast. Sometimes it takes only one or two trials. The

speed suggests that built-in neural connections are utilized.

Functional organization of the cortex - Luria’s model

There has been a lot of evidence collected since the nineteenth century that the posterior
cortex receives signals from the sensory systems and is generally more concerned with
the sensory function than the anterior cortex. It has also been proved through various
experiments and observations of humans with cortex lesions, that the anterior cortex is
responsible for the motor system. and much less responsible for sensory processing. The
interactions with the sensory systems are rather indirect through the modulating influence
that is procured by the conex efferents connecting with the thalamus and other sub-
cortical structures. A hierarchical model of the cortex function has been built that

involves three types of the cortical areas:
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I. Primary areas, sensory and motor.
2. Secondary areas, sensory and motor.
3. Tertiary areas that are called associative.

Many researchers proposed theories based on this basic, hierarchical model. Luria's
model seems to be a good example. Although it has been proved since then that a purely
hierarchical theory of the cortex function is incorrect, Luria’s model is a good top level

description of the processes and pathways that constitute overall cortex functionality.

In Lunia's miodel, the cortex is divided into two basic parts with respect to the performed
functionality. The posterior part, that includes the occipital. parietal and temporal lobes is
the sensory unit. The anterior part of the cortex is the motor unit. It comprises only one

lobe: the frontal one.

Figure 14 illustrates the sensory cortex with sub-regions representing the primary.
secondary and tertiary sensory units (graded shadowing). The signals from the thalamus
arrive to the primary areas (most dark) where they are analyzed with respect to their
location, intensity and patterns of activation. To properly fulfill that task. the primary
cortices are organized in arrays or maps representing those characteristics. The
homunculus that was presented earlier is an example of such 4 map in the somatosensory
area. The results of the primary analysis are transmitted to the secondary sensory areas
(medium gray) where sensation is consolidated. but still retains its modality. The
integration of various types of sensations occurs in the tertiary. associative. areas (white).
Luria believed that the sensations are assigned their symbolic meanings in those areas

and. consequently, is the area where the abstract thinking starts.
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Figure 14, Luria's model - The sensory cortex.

The motor ¢ortex is illustrated in Figure 15. The direction in which the signals are passed
from one area to another are reversed here; i.e.. the tertiary area sends efferents to the
secondary area and the secondary area, in turn, sends the signals to the primary area. The
tertiary motor area is the highest level structure in the brain. It is the area in which where
intentions are created. Those intentions are translated into complex behavioral patterns
that are divided into singular actions in the secondary areas (pre-motor cortex). The
primary motor cortex has an organization similar to the primary sensory cortex. It
similarlycontains topographical maps (like that itlustrated by the motor homunculus).
Those maps are used to direct the actions into the proper locations with the proper

intensity.

Figure 15. Lunia’s model - The motor cortex,
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The problem with the Luria's model is not that it is wrong, but rather that it is not

complete. As new research techniques and tools were designed, more and more data was
discovered that contradicted the pure hierarchical model. There are many cortical
connections that do not fall into any hierarchical pathways. That mixture of the
traditional hierarchical view and new parallel extensions to that model underline the

complexity of the function performed by the cortex.

There have been many books written about the brain that include descriptions of the
cortex. Some of them are listed in the bibliography: e.g.. [16]. {30] and [18]. The reader

secking more details is referred to one of them.
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CHAPTER 2

The cortical column

In Chapter 1. the laminar organization of the cortex was presented. This organization is
based on the types of neurons that can be found in the cortex and their arrungement. The
same criterion was used by Broadmann to divide the cortex into many distinct regions. In
this chapter. a closer look a1 the cytoarchitectonic structure of the cortex is taken. The
researchers discovered that althougn various areas of the cortex can be distunguished.
there is a certain characteristic micro-arrangement of a4 number of ncurons that is
common to all of them. That arrangement 15 called the cortical coiumn. In the course of
many experiments. it became obvious that the cortical column constitutes a second
fundamental level's information processing wunit. The architecture. behavior und
computing capabilities of the cortical column ard a network of cortical columns are

discussed in this chapter.

TYPES OF NEURONS IN THE CORTEX

Many types of neurons have been found 1n the cortex. Some of them are included in the

illustration in Figure 16. The most characteristic ones are pyramidal cells. easy to

A newron s tie first feved orgamizzsonsd anat.
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recognize by, and called after, the pyramidal shape of their somas. Other neurons are

more difficult to classify, and they are often referred to by several common terms:
stellate cells. interneurons, non-pyramidal cells. They might be bipolar. multipolar or
bitufted with respect to the shape of the tree of their dendrites. According to the
concentration of spines on its dendrites, an interneuron may be spiny or smooth. Usually,
interneurons do not send axons outside the area in which their body is located. Many of

the interneurons have been given names after the shape of their dendritic or axonal trees.

The pyramidal and non-pyramidal neurons will be described in greater detail in the

following few sections.

Pyramidal neurons

Pyramidal neurons usually have their somas in layers 2 and 3 or 5 and 6. Characteristic
for a pyramidal cell is not only its soma, but also its apical’” dendrite. The apical dendrite
usually crosses several cortical layers. That design gives the pyrumidal neuron the
capubility to integrate a variety of inputs specific to different cortical layers. The cells
that have their somas in layers 2 and 3 have shorter apical dendrites than the cells with
their somas in layers 5 and 6. Both types of pyramidal neurons, supragranular - those
with their somas above the luyer 4 that is called granular - and infrugranular - with somas
in the layers 5 or 6 - receive only excitatory synapses. The main sources of input signals
to pyramidal neurons are afferents incoming from other neural structures or other cortical
areas. The signals can be transmitted directly by synapses with the afferents or axons on
the somas and dendrites of the pyramidal cells or indirectly through other cortical

neurons.

UiThat 1s oriented perpendicularly to the surtace of the contea,
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Figure 16. The most important cortical neurons.

It has been demonstrated that the axons of pyramidal neurons constitute the main output
of the cortex. Using various tracing techniques many researchers found that the axons of
the infragranular pyramidal cells usually project to other, lower, neural structures. They
carry activation signals for actions that are carried out by the appropriate subsystem. For
example. they can activate o movement by sending signals to the basal ganglia or even
further to the spinal cord. The supragranular pyramidal neurons have been found to send
their axons usually to proximal'® or distal'® pyramidal neurons in the cortex. Those axons
constitute main cortical pathways that distribute activation throughout various areas of

the cortex in order to integrate and correlate different aspects of the perceived
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phenomenon. That columnar activity is internal to the cortex and represents abstract

thinking, i.e., reasoning without the involvemnent of any physical resources.

The cortex grows starting with the lower layers, so it may explain why the pyramidal
cells in the lower layers fulfill more basic functions providing control for the lower level
subsystems. When the higher layers are added to the cortex, the extra resources can be
used on more sophisticated functionality. That is why the supragranular pyramidal
neurons can migrate toward other cortical regions creating in that way framework for

thinking.

Spiny-stellate neurons

It has been demonstrated through tracing experiments that layer 4 of the cortex is the
location where the most of the thalamic efferents terminates. Laver 4, a layer that is said
to be granular because of the high density of various interneurons. is commonly
considered to be the input layer of the cortex. That layer is very thick in the primary
sensory areas and very thin in other regions that do not have direct input from the

thalamus.

Spiny stellate cells (cell labeled Sy in Figure 16) are found exclusively in the middle
layers (mostly in layer 4) of the cortex. Many neuroscientists believe that they are.
together with the pyramidal neurons, the main targets of thalamic signals. Spiny stellate
cells, however, span their dendritic trees locally with respect to wie laminae and the
cortical area. The axons of spiny stellate neurons have similar. locai. ramification. but in
addition to layer 4 they may project to adjacent layers 3 or 5. Due to the property of

limited localization, spiny stellate interneurons are not intzgrating units.
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Spiny stellate cells have excitatory nature. They project to the somas or apical dendrites

of pyramidal neurons and other interneurons. This organization is conducive to

processing input data.

Cortico-cortical tracts may also terminate in layer 4. The term "input”, therefore. includes

both types of input: external - thalamic - and internal -cortical.

Chandelier neurons

A chandelier neuron. whose dense pattern of axonal ramifications resembles candles of a
chandelier. is mostly found in layers 2 or 5. The cells with their somas in layer § send
their axons up. and vice versa. the cells with their somas in the supragranular layers send

their axons down.

The behavior of chandelier cells is inhibitory. They synapse with other neurons, mostly
pyramidal and spiny stellate, usually in the vicinity of the initial segment of the output
axon. For that reason, they are thought to be gating the output from the post-synaptic

neuron.

Chandelier neurons can be found mostly in sensory areas.

Basket neurons

Basket interneurons (cell labeled S5, Sz in Figure 16) are so called because they have
axons shaped in the form of a basket around the cell bodies und proximal dendrites
belonging to pyramidal cells. Their somas are usually in layers 3 and 5. They project
horizontally. but also cross several layers before they reach the destination. Basket cells

receive signals from collateral axons of pyramidal cells.

School of Computer Science. Carleton Umiversity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Basket cells exhibit an inhibitory behavior. They may, therefore, suppress the activity in

pyramidal neurons in the neighborhood while the activity in the region is high. Such

behavior enhances the contrast between neighboring groups of cells.

The density of basket neurons is relatively high in the motor areas of the cortex.

Double bouquet neurons

The somas of double bouquet interneurons (cell labeled S5 in Figure 16) are found
mostly in supragranular or granular layers. Their axons form dense vertical branches
directed down and up. That gave them their name - the axonal branches look like

bouquets.

Double bouquet neurons are inhibitory, but because the preferred targets of their axons
are other inhibitory cells, their overall role is dis-inhibitory. Their role might be a

modulation of cortical activity across the layers.

Bipolar neurons

Bipolar cells are similar to double bouquet neurons. because of the dendritic and axonal
trees that have as well preferential vertical orientation. They receive signals from

supragranular pyramidal cells.

Bipolar neurons are excitatory. Hence, their task might be to move high activation from

the supragranular layers to the infragranular ones.

Smooth stellate neurons

Smooth stellate neurons are inhibitory. Their somas have been detected in many layers of

the cortex, but mainly in layer 4. These interneurons are multipolar and often are called
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short axon or local circuit cells, because they usually project to the same or neighboring

cortical layers.

Smooth stellate neurons are considered a gencral processing elements, because they
synapse with wide variety of other neurons. They can connect to somas, dendrites. spines

and axons of pyramidal and non-pyramidal cells.

THE CORTICAL COLUMN

In the course of their experiments, neuroscientists noticed that reaction to a stimulus is
highly localized in the cortex. They observed that the response to a sensorv input is
independent of the depth of the placement of the electrodes that detect and measure the
activity of the cortex. Slight differences in the promptness of the response have been
observed. When the electrode is placed in the granular layer 4, there is the shortest delay
between the stimulus and the response. That is in agreement with the earlier observations
that layer 4 is the main input of the cortex. Efferents connect directly to the somas and
dendrites of the receiving cells. The supragranular layers get activated next. There are
fewer direct connections between afferents and the cells in those layers, so the activity is
carried over the interneurons. The additional synapses that are required are the reason for
the delay. The infragranular layers are activated last. One reason is that they have only
their apical dendrites in the proximity of the afferents, while the supragranular cells have
their somas and basal dendrites closer to the terminals of the axons of the input tracts
with their large surfaces more inclined to make connections. Additionally, spiny stellate
cells have their axons usually projecting upward, and that favors the upper cells as the
targets of the propagation of the activity. The fact that the infragranular layers are
activated last in the cortex, underlines their role as the output zones. Axons of the
pyramidal cells carry the integrated signals to other regions of the cortex or to other

neural structures.
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Another important observation is that if the electrode is moved a little bit, it detects
activation that is the response to possibly completely different stimulus. It has been
proved that neighboring groups of neurons that span the area of the cortex with a
diameter of (1.5 to 1.0 mm respond best to different stimulus. Little activity is spread
laterally, i.e., high activity in one mini-circuit does not cause a change in the activity of

its neighbors.

These findings suggested that there is a functional unit that is vertically oriented crossing
all cortical layers. Szentagothai was the first to put forward that idea. He called the mini-
circuit of interconnected cortical neurons that respond in a uniform way to a stimulus a
cortical column. Since then, there have been many followers, and currently the existence
of a functional unit that retained the name given it by Szentagothai {31] is a commonly

approved fact.

In Chapter 1, the topology preserving minping that occurs in the cortex was described.
The columns are an integral part of that phenomenon. The columns of a specific re iin
responsive to a particular sensation may represent different aspects of the perception. For
example, there is a region in the somatosensory cortex responsive to stimuli applied to a
hand. The columns in that region are activated by the sensory information coming from
sensors of various types. There are columns that respond to tactile data. temperature.
position of the joints, etc. Such distant sensations do not fit very well with the isomorphic
mapping scheme that represents whole body as one image in the cortex. However. recent
studies show that there are many representations of the body. Some projections can be
repeated many times in various regions, implying that the particular sensation space that
they map is a component ¢. many more complex perception spaces. Such a two-tier
organization can be explained by the need to represent a multidimensional world on a
two-dimensional plane, the cortex. There have been, unfortunately, only a few areas in

which spaces of the first and second level indices are clearly defined.
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- 18

Figure 17. Two-tier organization of the topology preserving maps in the cortex.

Figure 17 illustrates the two-tier organization of the above topology preserving maps
(after Ballard [4]). Two regions with the first level index spaces A and B contain several
regions with the second level index spaces. Some of those sub-regions, namely Y and Z,
are repeated in A and B. This implies that ¢ sensation that can be indexed by Y is a
component of two different compound perceptions. As illustrated by A in the figure, an
entity that maps to a higher tier in one location may be mapped to a lower lever tier in
another region. From the perspective of this thesis, there are two important things worth

noting:
o there are uniform functional units -cortical columns - in the cortex and

e u functional map. in fact a network of a number of interconnected columns. may be

used for various purposes.
The composition of cortical columns in various parts of the cortex, particularly between
its motor and sensory parts, might differ. There are, however, enough similarities that
allow the degree of generalization that has been presented in here.

CONNECTIVITY OF THE CORTICAL COLUMN

The role of the basket cells enhancing the contrast between neighboring columns through

inhibitory connections with pyramidal cells belonging to other columns was described
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before. That aspect of the connectivity pattern of the cortical column is a vital part of the

capability of the cortex to self-organize itself into feature maps.

The remaining patterns of connectivity of a column with more distal entities are
summarized in Figure 18. The figure shows a cross-section of the cortex with images that
are generated by three types of staining, i.e.. marking the elements of the cortex so they
can be photographed. There are some differences in the connectivity of the cortical
columns in the motor and sensory areas that are disregarded here. The same degree of

generalization is made as it was done with the cortical column itself.

The afferents arriving to a cortical column usually have their terminals in layer 4. The
medial section of the cortical column is. therefore, considered to be an input interface.
There are two sources of input signals incoming to the interface: cortical - from other
regions of the cortex, and thalamic - from the thalamus. The cortico-cortical afferents can
interconnect proximal or distal areas of the cortex. They include connections between the

two hemispheres of the brain, called callosal afferents.
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Figure 18. Types of efferents and afferents of a cortical column by layer.
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The activity is distributed across the whole column through the internal interneuron

connections. The activity is easily transmitted to the supragranular pyramidal neurons in
the upper part of the column because of the favorable location of their somas and the
dendritic trees. Higher levels of input activity are required to excite the infragranular

pyramidal neurons in the lower part of the column.

It is important to indicate that the input activity of a column is a sum of the cortico-
cortical and thalamo-cortical afferents. ¢ onsequently, the activity of a column depends
on the sensations induced by the external stimuli as well as on the internal processes

occurring in the cortex.

The pyramidal neurons were describod as the output cells of the cortex. They fulfill the
same role with respect to the cortical column to which they belong. Generally, the
distanice to which a pyramidal cell projects depends on the laminar position of its soma in
the cortex. The deeper the soma is located, the further the axon transmits the neuron's
activity. That arrangement can be explained by analyzing the ontogeny of the brain and
the cortex. The growth of the cortex begins with the lower layers and the neurons in
those layers are used to accomplish the most basic functionality. That requires long
distance connections that vuan reach as far as the spinal cord. The level of the
functionality that is still unrealized increases when the higher layers of the cortex start to
develop. The more complex the functionality provided by a specific neural system is. the
closer to the cortex that subsystem is located and, as a consequence, the shorter the length
of the efferents. Finally, connections between cortical areas are sprouted from the higher

cortical layers.
Hence, a cortical column has two output interfaces:

e cortico-cortical efferents, realized by the axons of the supragranular pyramidal

neurons in the higher section of the column and
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» cortico-sub-cortical efferents, realized by the axons of the infragranular pyramidal

cells in the lower sections of the column.

The cortico-cortical connections are considered to be the basis for the higher level
functionality that is usually associated with abstract thinking and problem solving.
Spreading activity across the cortex can be considered an attempt to correlate
asynchronous input data with the information stored in the long term memory. If the
activity is low, it might be sufficient to activate only the supragranular pyramidal
neurons of the receiving column, so the information is processed without any external

output.

The cortico-sub-cortical efferents carry the signals that represents commands to be
executed by the lower level neural subsystems. There are. for example. axons that
terminate in the basal ganglia or the spinal cord and the signals carried over those
connections trigger more or less complex motor actions. The level of excitation of the
infragranular pyramidal neurons represent an overall state of the column. because of their

integrating characteristic described before.

The cortico-sub-cortical efferents include also the cortico-thalamic efferents that are used
to modulate the sensory data that are being transmitted via the thalamo-cortical afferents
to the cortex. The cortex may control the level of the input activity by enhancing the
sensitivity to the sensations that are being considered important or suppressing the signals

that are regarded to be a noise.

THE CORTICAL COLUMN AS A PROCESSING ELEMENT

The cortical column is an elementary information processiing unit of the cerebral cortex.
It receives an input that comes to the granular layer and is distributed verticallv across

the column: first to the supragranular, later to the infragranular layer. The level of the
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input activity that is required to activate the upper pyramidal neurons is lower than the

level required to activate the infragranular cells. The activity in the higher sections of the
column represents a concept or feature with which the column is asscciated. When the
pyramidal cells in layers 2 or 3 are activated. they can excite other columns. also with
some well defined representation. via the cortico-cortical efferents. In that way. various
features. concepts. aspects of the sensation. etc.. can be correlated. If several columns
projects to the same column. the integrated input activity might be sufficient to not only
activate the upper pyramidal neurons. but also the lower pyramidal cells. That might
trigger an external action that will, in turn, change the overall pattern of activity in the

cortex through the feedback mechanism.

The following three states of a cortical column can be defined on the basis of the

observations presented so far:

e no. or very low. activity. suggesting that the feature or concept associated with the
column has neither been detected by the sensors nor recalled from the memory

tdefinitive NO).

e activity only in the higher sections of the column, suggesting that the feature or
concept has been recalled from memory due to some internal processes (MAYBE).

and

e activity in the whole column. suggesting that the feature or concept has been

confirmed as present in the current context (definitive YES).

In each of those states, the column may receive input signals from other cortical regions
or the thalamus. The columnar output is completely passive in the NO state. While in the
MAYBE stute, the column sends signals only through its cortico-cortical efferents.

because the activity is too low in the lower section of the column. The YES state results
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in the firing of the infragranular pyramidal neurons. In addition to the possibility of

inducing an external action, high activity in the lower layers may activate inhibitory
interneurons that suppress the activity in the column. If a partial activation of a column is
considered as an anticipation of the presence of a feature or concept. or as a goul. the
phenomenon that shuts down the activity in the column after the column is completely

activated can be treated as a neural implementation of goal satisfaction.

PROPERTIES OF A NETWORK OF CORTICAL COLUMNS

The cortical columns through their efferents and afferents constitute a network of
interconnected processing units. Some of the properties of the cortex were described in
Chapter 1. Those properties were related to the capability of the cortex to organize into
topographical maps. The maps in the sensory cortex reflect the physical world as
perceived by the human sensors and communicated te the cortex via the thalamo-cortical
connections. On other hand, the maps that are created in the motor cortex are organized
according to the layout of the body parts that they control. The motor vortex includes the
frontal areas that are considered to be the location of the cortex where the most abstract
processing occurs. There are less efferents leaving the cortex trom those areas — most of
them terminate somewhere else in the cortex. possibly closer to the regions directly

controlling the motor neurons.

The capability to generate feature maps comes from the competitive nature of lateral
interconnections between columns that was described earlier. It is a4 very interesting
aspect of the overall functionality of the cortex. that has been swdied by muny
researchers. There have been several artificial networks implemented. for example
Kohonen's network. that behave in a similar way. te.. where local specialization
develops when sample data is fed into the network. Ultimately. certamn features or

concepts will activate a single unit or a well defined set of units. The relationships
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between the images in the network as représented by the patterns of the connectivity are

reflection of the relationships in the training sample data. There is a strong evidence that

the same process occurs in the cortes.

From the perspective of this work, other capabilities of a network of cortical units are
more interesting, It has been suggested in the previous section, that a hightly activated
(i.c.. only the pyramidal neurons in the upper sections ot the column are active) column
can represent an anticipation of g certain feature or concept. That is equivalent to saying
that the column represents a certain goal. If the anticipation is satisfied. a conclusion is
that the goal has been reached. The initial anticipation probably is the result of a desire or
need born somewhere else in the brain. The fimbic system may translate such needs into
signals that are carried over the cortex afferents to proper columns. Many columns ure
probably involved in such a complex task. Each of the mvolved columns represents a
sub-goal that must be satistied to satisty tise global goal. The acuvity that represents a
sub-goal. that from the ocul perspective is just another goall is spread across the cortex
through the cortico-cortical efterents. None of the receiving celumns get highly
activated. uniess they are also anticipating or getting external inputs from the sensors. In
such 4 case, the anticipation of the receiving columns is fulfilled, ie., the goai is
satistied. and the columns are shut down by the mhibitory interaction between the lower

and upper lavers.

Although that is only a hypothesis. there is some research data that seem to support the
described behavior. 1t has been demonstrated. that before a hund can be moved, for
example. to a certain desired position, the column in the sensory cortex that represents
the hand i that position is activated shightly before the actual movement takes place. The
hand 15 10 another position at that time. so the activity cannot be caused by a sensation. It
seeins that the cortex s presented with the goal that is personitied by the activity in the

column. The activity that spreads throughout the cortex finally reaches the coluinn that
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represents the current position of the hand. Because the hand is actually in that position.

the sensors send signals to the column's input. The result is that column now becomes
highly activated. That activity can easily be transmitted to the primary motor cortex that
is more or less symmetrical, with respect to the topographical maps. to the
somato-sensory cortex. That may trigger a motor action that will move the hand into
another position that is closer to «he goal position. The next sensory column once again
gets two inputs: one from the sensors and enother from the anticipating column, so the
same process occurs. Finally. the hand is guided to the desired position. so the first
column in the chain gets highly activated and shuts down. The goal has been achieved.

The hand is in the desired position.

The process of moving a hand has been dramatically ~simplitied here to illustrate the
capability of the cortex 1o perform searches. The search trees in the cortex might be very
complex with many branches ut many levels. The basic mechanism however seems to be

the same at every point.

There are certain activities that are being performed routinely. without any dose of
uncertainty. That may be due to that fact, that certain cortical paths are repeated many
times, so the influence of certain columns on others becomes so strong that the activity is
transmitted without any loss of its intensity between the columns. Therefore. if a column
get activated with & sensory input, it may activate the one that is tightly coupled even if
the other cell is not is the anticipating state. If that happens in the somato-sensory cortex.
the activity can be transmitted to the motor cortex and the movements can be generated

as described earlier.

In the next parts of this work, the observations made in this and the preceding chapters

will be the basis for the attempts to build a model of the cortical column. A network of
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such model processing units has characteristics like and exhibits behavior similar to

biological cortical networks.
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CHAPTER 3

A model of the cortical column

OVERVIEW

For years, scientists have been looking at the brain as a prototype for computing
machines. In some way. the classical von Neuman architecture is the result of yet another
attempt — and a very successful cne! There have heen many others trying to duplicate the
elegance with which the nature solved the computational needs of new generations of
mutants in the never ending process of evolution. A new multidisciplinary area of science
has been founded that encompasses the research related to reverse engineering of the
brain. It appears that it is not that easy to imitate the simplicity and, at the same time. the
complexity that is so integral to the human brain. There are many fascinating
publications describing the theory and applications of neural networks and the reader in
encouraged to refer to such material for the details. This work is this author's endeavor to

mimic Nature.

A biological cortical column that has been presented in Chapter 2 is proposed in here us a
prototype for an artificial information processing element. On one hand. the column is
the smallest entity in the cortex that can represent abstract data. On the other hand. it is

the lurgest cortical object that has been relatively well researched and can be described in
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terms of facts and not hypotheses. In the opinion of this author, a neuron, that is usually

modeled in neural networks. is too simple to be used to process higher levels of
information. In turn. groups of neurons. cell assemblies. that represent abstract
information in a distributed way are hard to manage. The cortical column seems to be a
tempting choice for a building block for neural networks whose purpose is to process
abstract data. The column is positioned in this work in the role similar to electronic logic

gates that can be used to process complex information at relatively abstract levels.

This model s based on the model proposed by Burnod [7]. However. i addition to some
unique features of the model of the cortical column presented in this thesis. notably the
learning schema. the main emphasis is laid on the computational capabilities of a
network of interconnected columns. To continue the analogy with electronic devices, the
network of artiticial columns could be compared to an EPROM chip that can ¢« ¢ loaded
with any specific data and used as 2 module in more or less complex combinations of
‘hips. The generality. or in other words universality. and modularity of the network were

the main assertions in the design of the mode! of the column as well as the network.

There is @ more detailed comparison of the model presented in this work and Burnod's
model in the last section of this chapter. The computational networks that utilize both

models will be compared in the next chapter.

In the description of the biological cortical column a special emphasis was put on the
features thut are used in the model presented in this chapter. The details of inter-neural
connectivity are dropped in favor of generalized relationthips. The inhibitory
interconnections within a neighborhood of a column are ignored as well. Lateral
inhibition is required to build discriminatory maps. Such a process can be achieved with
other networks (for example Kohonen {1X]). Therefore in this work. an assumption 1s

made that the nodes of the network do have specific meaning or features or concepts
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associated with them. That could be accomplished by training a feature extraction and

topology preserving network and clamping the outputs of the nodes that generalize

specific features onto the network of columns as illustrated in Figure 19.

Sensory data

<> <> <> <> 71 Kohonen network

e
OO o>
Feature map
r‘/ g
Lem o e |
>
il g P ey il g Cortical network

Figure 19. Preprocessing input data using a Kohonen network.

The network of artificial columns is called neurosolver, because it is capable of
performing searches in the space of all possible states of the network activity. The
problems are presented as points in that space in the form of an increased activity in a
node or a set of nodes that represent a goal, i.e., the desired end state. The network solves
the problem by subsequently firing, i.e.. activating at the high level. all sets of the nodes
that constitute the solution path, It is the path from the current state (u set of premises) to

the goal. That capability will be discussed in detail in the next chapter.

ARCHITECTURE OF AN ARTIFICIAL COLUMN

In Chapter 2, while presenting the anatomy of the biological cortical column, two distinct
parts were denoted as playing important roles in the processing capabilities of the column
as well as the network of columns. The upper section of the column including the

supragranular layers and encompassing the upper pyramidal cells is a prototype for the
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upper division of the model. The section intersecting the infragranular layers that

contains the lower pyramidal neurons corresponds to the lower division of the model.

Cortical
Afferents Cortical
INPUT Efferents
Thalamic
Afferents
OUTPUT
Sub-Cortical
Efferents Figure 20. An artificial column,

The section of the biological cortical column that intersects the granular layer receives
afferents, both cortical and thalamic. so in the model it is represented as an input. The
external data are passed into the column through the thalamic input. The cortical input is
used to interconnect the columns into a network. It is also used to set the activity of the
column at the low level indicating the goal — problem to solve. Direct synapses and some
of the interneurons connect the input layer with the upper and lower pyramidal cells. In

the model. there are paths that transmit the input activity into both divisions.

There are also interneurons that connect the upper pyramidal neurons with the lower

pyramidal cells. That is reflected in the model by upper-lower connection.

From now on. the term column will be used to refer to the model. If there is a danger of a
confusion between the model and the biological cortical column a proper adjective will

be added.
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CONNECTIVITY

The artificial cortical column is a building block for constructing computing networks.
The external connectivity of the column plays. therefore, a crucial role. The connectivity

of the column is illustrated in Figure 21.

There are two connections that, as internal to the column. do not take part in inter-
connecting columns in a network. The Upper-Lower connection transmits the activity
from the upper division to the lower division. The internal Lower-Upper connection
realizes the inhibition (suppressing) of the upper division by high activity in the lower

division.

The Upper-Upper connection corresponds to the biological columnar efferents realized
by the axons of the upper pyramidal cells carrying signals from one column to another.

Those axons originate in the supragranular layers and terminate in the cortex.

Another column 3 7 Upper-Upper

or L AR "_4:_2‘:,' H ',:
external input ’;

External input

External output

Another column

"/ Lower-Upper

Figure 21. The connections of the artificial column.

The Lower-Upper connection. in turn, corresponds to the axons of the lower pyramidal
cells. Some of those axons (mostly from the higher located - in layer 5 - lower pyramidal

cells) carry signals to other cortical areas.
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Most of the axons of the lower located low pyramidal cells, those in layer 6, project to

the sub-cortical regions. In the model. the artificial counterparts constitute the output of

the colunmn.

In the model. some important simplifications have been made in comparison to the
biological cortical column. Firstly. the input is being injected into the upper or lower
division of the column. The reader may remember. that in the biological column. the
granular layer is the input layer . The activity, however, is carried to the upper and lower
divisions through the interneurons. Secondly. there is no difference between the location
of the termination of the cortical connections from the upper division and from the lower
division. They project to the same targets. The biological efferents originating in the
layer 5 usually project to more distant areas than those originating in the upper layers of

the cortex.

FUNCTIONALITY

The artiticial column is a three-state device. If there is no input activity and no sustained
internal activity from the past. the column is inactive. The interpretation of the inactive
state from the information processing perspective is that the concept represented by the
column is pot present in the current computing context. It is a definitive NO. There is no

output activity whatsoever from a column in that state.

The upper division of the column can be activated by action potentials from other
columns. incoming through connections from both. upper and lower. divisions, and from
the external. cortical, afferents. The input activity of the upper division is calculated
according to the following formula:

putActivity = Y actionPotential * connectionStrength

4t veConnections
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activeConnections are those from the columns that have not been recently activated

directly by this column. That rule prevents the existence of self-exciting pairs of

columns. It does not. however. prevent a longer self-exciting loops.

After the input activity is integrated in the upper division, the division sends action
potentials via connections to other columns. The pattern with which the activity diffuses

throughout the network depends on the strengths of the connections.

f Outputs
7 Upper-Upper

Upper-Upper

Upper-Upper

Inputso mal

l.ower-Upper

Figure 22. The integrating capabilities of the upper division.

The activity in the upper division is transmitted. as well. to the lower division. The
Upper-Lower channel does not have any resistance. so the lower division gets exactly
same level of activity as the upper one. Although there are connections leaving the lower
division, the activity is not transmitted anywhere until the threshold level is reached. If

that happens. it is said that the column fired. Then the activity is distributed through

action potentials to the receiving columns. The strength of & specific connection

determines how large an influence on the receiver the firing of the column will have.

Both the lower and upper divisions receive external afferents. These afferents play an
important role as the inputs to the system. The cortical afferents are incoming to the
upper division. and the thalamic afferents are incoming to the lower division. The

cortical input can be used to express goals by activating the upper division of the
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column!® that represents a specific, desirable state, feature or concept. A similar process

occurs in the biological brain where the limbic system can trigger an activity of a column
that represents. for example. a desire. The persistence of that activity denotes the goal to
achieve - the desire to satisfy. The goal is reached when the activity is suppressed. That
will happen when the column fires. The firing of the column can also trigger some

external action. Figure 23 illustrates that process.
a) b)
Goal \ Y
sat m~

observed £/ O!hnv column

Oihar column
External output

Figure 23. Setting the goal (a) and its satisfaction (b).

The upper division of the column is a vehicle for processing abstract data through the

changes to the activity patterns depicting concepts or sequences of concepts. On other

hand, the lower division is in touch with the physical world as represented by the activity

¢f the sensors.

The upper division is the integrating part of the column. since it correlates signals from
other columns. The lower division is the decisive component of the column. It
determines whether the concept is perceived and controls the output that may. in turn,
alter the environment. Ultimately. the lower division is a vehicle that drives the behavior

of the column toward goal satisfaction.

YOr upper divisions of a et of columns if the concept has a distributed nature.
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After firing, the column becomes insensitive for a while. No input activity, thalamic nor

cortical, is accepted. That prevents two mutually connected columns from firing in an

oscillating manner. Such behavior has been observed in biological systems as well.

ADAPTIVITY

The strength of the connections between the columns determines the nature of the
changes to the patterns of network activity. That aspect of the behavior of the network

defines the information processing characteristics of the network. The capability to

construct an information processing device by a dynamic process is the very core of the
interest of this work. Like in other types of neural networks, that capability is achieved

by the adaptivity of the strengths of the inter-columnar connections.

In the model presented in this work, there are two rules of how the connections are
modified depending on the patterns of <hanges in the activity of a column and the
columns that transmit signals to and receive signals from that column. The first rule (the
feedback rule) states that if a specific column fires, the strengths of all Upper-Upper
connections to the columns that fired directly before are increased. That process is
illustrated in Figure 24. Column B is the center of the example. Columns A and C are
connected to B. At a certain point in time, let us say T. column A fires: columns B and C
do not. In the next tick, T+ 1. column B fires. Acording to the adaptation rule. column
A fired directly before column B, so the connectiun to the upper division of column A
from the upper division of column B is strengthened. The connection to column C stays

the same or is, at least relatively, weakened.
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a) b) | 0
A B C A B C

Figure 24. The adapting process of an Upper-Upper connection.

It is important to note that after the connection strengths are modified. it will be more
likely that activity in the upper division of column B will cause changes in the activity of

column A rather than in column C.

The second adaptation rule (the feed forward rule) says that the strengths of all
Lower-Upper connections are increased between the columns that fire now and those that
fired just betore. Figure 25 illustrates the process of modifying the Lower-Upper
connection. In the figure, there are again three columns: A, B and C. Column B fires at
the time T und sends the action potentials to columns A and C. At the time T + 1. column
C fires. The adaptation process increases the strength of the connection between the

lower division of column B and the upper division of column C.
a) b) 0 N
A B C A B C
Figure 25. The adapting process of an Lower-Upper connection.26

The implications of the feed forward rule of adaptation are similar to those stated for the
feedback rule: after the modification, firing!” of column B will have bigger impact on the

activity in column C than in column A,

F7A column fires when the actuvity Jevel of the Jower division ss higher than the output threshold. so the
column transmits activity from the lower division only if firing.
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The reader should note that both adaptation rules work at the same time. For the clarity

of the description they were separated in the examples.

The ability of a column to adapt the strengths of the connections with other modules
depending on the patterns of network activity will be analyzed from the network’s

perspective in the next chapter.

CONNECTION STRENGTH

There are currently many formulas for the strengths. or weights. of the connections
between the nodes of neural networks in use or trial. Most of the lcarning schemes. the

algorithms ruling the adaptivity. like that described in the previous section. are slow.

They require many iterations of presenting samples before the networks can learn: i.e..
recognize classes of input patterns, extract features, suppress input noise, etc. One of the
premises of this work was to design a formula for the strength of a connection that would

allow an input pattern to be recorded fast.

The model was implemented using two different approaches to the computation of the

strength of a connection:

¢ hebbian and

e probabilistic.

The probabilistic approach was proposed by Burnod [7. 2]. The learning rules are.

however. different in this work.
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Hebbian style

The hebbiian approach emplevs the moditication rule that was proposed by Hebb [13]:if
two cells tend to be activated together then the strength of the connection between them
in ncreased: 1f the opposite holds, then the connection strength is weakened. That rule
nus been moditied for the purpose of this work due to the sequential nature of the
computations of 4 network of cortical columns The analysis of the coacuvation aspects
of cortical columns is not aitempted o this work, though that might be part of the future

experinents.

In the terms of the hebbian rules. the modification scheme described in the previous
section can be re-worded. I the value of a connection strength is designated p. then pe
[0 1 ]cR. The strength of the connection that links the upper division of the column that
has just tired with the upper division of the column that fired directly before gains u
constant or variable value £ €0 R, The variable £ can be a function £ of the
previous strength pror the activities, U, o papee AN Opocs o nange 0f the columns that are
connected by the link. or more complex combination of all of those. Generally, uving a
varighle € v advantageous over using a sumple vonstant. The aduptation rule for the

Lower-l pper connection is similas:

p...=p. r¢  where ¢ = £ip 0. . ,0 . o )e[0,1]c R

Probabilistic style

i the probabilistuc approach. catun statistical parameters wre recorded for every
division ot each column. det us suy C.oand every connection. C,Cp. and later used to
calcuiate the strength of the connection. When o diviston activity increases from jow
fever to hughdevel of activity, then the countey Cup is aincreased. Another counter. C.ois

mcreased tor cach column that sent acuon potentiad to the mputs of the column i
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yuestion, so it counts the global influences on the column. The third statistical parameter,

Cout- counts all receivers that fired as a consequence of receiving action potentiuls atter
this column fired. A counter of influences. CiCjcons~ is maintained for each connection. It
is increased each time the connection carries an action potential from the pre-synaptic
column. the transmitter. that fired to the post-synaptic column, the receiver. that fires as a
consequence. These statistical data are used to calculate the strength of both. the

incoming and oatgoing, connections.

There are several probabilities calculated for the purpose of calculuting the strength of g
given connection. In the following formulas, A and B are pre-synaptic and post-synaptic.

with respect to the connection in question, cortical divisions respectively.

e The probability indicating how hikely the change of the activity of the pre-synaptic
division from low to high is to generate a successful action potential (ie.. such that it

will take part 02 influencing the post-synuptic division):

P - AB cons .

cons
Ay

e The probability ot how inclined the action potential carried through the connection i

to increase the actvity of the post-synaptic division:

e The probability of he a prone the post-synaptic division is to change its activity from
low to high upon reception of any action potential from any put:
B

P - B—”P.

n
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e The probability describing the likeliness of an action potential being carried over the

connection after the pre-synaptic division's activity moves from low to high,
changing the state of the post-synaptic division:
P _ ABCOI’]S
DL‘{ o 8 ¢
out
o The probability of how prone the post-synaptic division is to influence other columns

atter chunging its state from low to high:

m

P .

out

The strength of 4 Lower-Upper connection is calculated using the first three coefficients:

The strength of the Upper-Upper connection may be computed using the same formula

but with the first and two Tast coefficients instead:

Pag = Peons“Pou™ Pupg

There is o number of alternate ways to combine Pegne. P Poo Poy and Py in
tormulas tor the strength of the connection. For example. for an Upper-Upper connection

it might be advantageous. for the reasons that will be explained in Chapter 4. to just use

Pag = Peone.

The strength or the connection between the upper and fower division iy fixed and 1ts
value i 1. Consequently. any activity in the upper division is transmitted to the lower

division. The strength of the connection in the opposite direction is fixed to -1 If the
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activity in the lower division exceeds the threshold. the activity in the upper division is

suppressed.

Although the first impression might be that the hebbian and the probabilistic approaches
are different, a little closer look allows us to restate the latter in the same manner as the

former:

Proy = P+ & where & = f(pr ’ apre—synapnc 4 aposl—synapﬂc ) € IO' ” =

The difference ix that the function £ is now given in statistical rather than analytical
terms. The reader may note that the formula using the defined probabilities may include
the decay and inhibition components. The decay is implied by the use of the statistical
counters Gy, G Coyp and CiCieops. If one of the inputs does not contribute to the
activity of the column, then. in consequence, the strength of the connection from the
corresponding division is decreased. because By and B, are increased. and ABggng stays
the same. If the action potential carried by one of the outputs does not contribute to a
high activity of the receiver. so AB.gns does not change again. then the strength of the

connection is decreased. because Ayp and Agy are increased.

Another counter. Cyopn. that stores the number of the cases when the activity of the
column went down. is included in the model. Cyopn could be used in the definitions of
analogous probabilities that would provide an inhibitory factor in the formula. The
inhibition is included in the considerations of future enhuncements to the model.
THRESHOLDS

Each division of a column has a number of activity thresholds:

o alow activity threshold defines the inactive state,
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e ahghactvity threshold defines the active state and

e an output threshold indicates the minimum activity that can be transmitted in the

form of an action potential to the receivers through the output connections.

All activity thresholds i the model have been fixed: i.e.. they are not adaptive. The
output threshold of the upper division is 0. The output threshold of the lower division is
the same as the high activity threshoid. The latter determines when the column fires,

because the lower division is the output component of the column.

COMPARISON WITH BURNOD'S MODEL

In his work "An Aduptive Neural Nevwork: The Cerebral Cortex” (7)), Burnod proposed
a columnar automaton, r.e.. 4 model of a cortical column. in an attempt to explain the
functionality of the cortex from the lowest to the highest functional level. Burnod's
model 1s based on the concept that was first proposed by Szentagothui in his work "The
Module Concepr in Cerebral Cortex Architecture” (131]). The concept was considerably
refined. particularly the aspect of its connectivity uand general functionality. by
Mountcastle in "An Organization Principle for Cerebral Function: the Unit Module and
the Distributed Syastem” (123]) and Zeki and Shipp in "The Functional Logic of Cortical
Connections” (]37]). Burnod followed the naming convention of his predecessors and
called the automaton module. rather than column. A functional module is defined as a set
of columns thut have a homogeneous activity. Although the existence of the upper and
lower pyramidul columns and different connectivity patterns of the upper and lower
sections of the column was known before. Bullurd in "Cortical Connections and Parallel
Processing - Structure und Function” (14]) was the first to propose the model that clearly

identifies three distinet parts: the upper. the intermediate and the lower divisions.
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Burnod's original contribution is the concent of a call and action tree and the use of the

trees to explain the functionality of the cortex.

In his original work, Burnod used the divisions in the descriptions of the processes
occurring in the cortex. The automaton, however, is viewed as one entity that can have
high or low activity or no activity at all. In his studies. Burnod uses upper-upper
connections and upper-lower connections. The upper-upper connections used in this
thesis have a similar to Burnod's application: i.e.. to spread columnar activity in a call
tree. The upper-lower connections are not used in our model. In Burnod's model they
represent the probability that cortical inputs alone will induce the high activity in the

receiving moduie.

Unfortunately, Burnod's original work and later publications (e.g.. |2]) do not provide
full details about the model. The activation rules for a module use the states of the
internal and external inputs and the previous state of the module. First, the globul
external input is calculated. An 4 priori specified mask defines which individual external
inputs will contribute to the global input of the whole unit. Next. each of the individual
internal inputs is used to calculate corresponding local internal and external outputs. The
calculation is based on the truth table that uses the global external input a5 4 modulation
factor for the inputs. Burnod uses EQ, E1 and E2 to denote. respectively. none. low and
high activity. Each of the local outputs may be in one of those three states. The state that
is predominant on all of the internal outputs s assumed to be the state of the global
internal output of the module. Similarly. the state predominant on the local external
outputs becomes the state of the global external output. It is not clear which of these

outputs is to be used in the next step of the column automaton.

The calculations of the local outputs use the strengths of the connections between the

modules expressed by two probabilities. Those probabilities employ the statistic al data
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collected during the learning. The type of statistics and the modification rules differ

considerably from those presented in this thesis. The rules for calculating the states
specified by the truth table are not uniform: i.e.. they differ depending on the position of
the module in the network. Burnod does not state it explicttly. but each module must be a

priori assigined one of the several 1ules specified in the table.
The global outputs can be expressed by the tfollowing formulas:
Ol(t) = £(l (1), IE' (1), OE (Tt -1),P0O",P2)
OE (1) = g(li(1),IE*(1),OE (t - 1),P0,P2)
where:
Ol and OE stand for internal and external outputs respectively.

i and j are the indices of the receiving and transmitting modules respectively. and

k indexes the external receptive field.
Il denotes the internal input.

IE stands for the external input;

PO and P2 are defined below.

In this thesis. more classical forms of the activity and output functions are used in the
model of the cortical column. The activation rules, therefore, differ considerably from

those used by Burnod and his coworkers.

The learning rules of Burnod's model are of a probabilistic nature. There are three types
of counters for each local input used to express the probabilities. The first counter, C_,

counts the cases when the activity at the E2 icvel on the local input was accompanied by
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the activity at the EQ level on the global output. The second counter. C ., counts the cases

when E2 on the local input is accompanied by E2 on the global output. The third
counter, Cgs, is increased each time there is a high activity, i.e.. E2. on the loca! input.

The probabilities PO and P2 are calculated as follows:

]
POl = ==
E2
i
P2 - G
E2

PO represents the probability that the learning module is inactive before a strong input
from the transmitting module. Conversely. P2 represents the probability that the learning

module 1s highly activated before a strong input from the transmitting module. Those

definitions are in contrast to the modification rules used in this thesis.

In addition to the differences stated so far. there are several aspects unique to the model
presented in this thesis. Firstly, we explicitly use the two divisions as two separate
entities. The interactions between the lower and upper divisions are also specific 1o this
work. A new type of a connection has been introduced: i.e. the lower-upper connection.
Generally, our model is less probabilistic in nature: i.e.. the probabilities are merely used
to express the stiengths of the connections. The implication is that it is possible to use an

alternate, hebbian, style of learning. That would be difficult in Burnod's model.

For more details, the reader is referred to Burnod's original work or to Alexandre et al..
[2]. In the latter, some of Burnod's coworkers explain the essence of Burnod's model in

much simpler terms than the original and analyze some of its applications.
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In Chapter 4. a comparison between the networks of columns and modules will be

presented.
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CHAPTER 4

The neurosolver - a network of cortical columns

NEUROSOLVER - AN INTRODUCTION

Every biological cortical column. as well as the artificial model introduced in the
previous chapter. represents a certain amount of information. The location of the column
in the network is determined by the place that the piece of information that the column
represents, be it u feature. concept. idea. wish. cte.. occupies in the corresponding
physical domain that has been mapped onto the network. Therefore. any pattern of
columnar actvity in the network may be tieated as a point in the space of all possible
states of the cbserved environment. The connections between the nodes, as defined in the
model presented in this work. describe temporal relationships between individual bits of
information represented by the nodes. If so. then groups of connections represent
temporal relationships between two adjacent states (adjacent with respect to time) in the
domain. Hence. anything that happens in that domain has a corresponding sequence of

patterns of network activity.,
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NEUROSOLVER

Problem to solve Figure 27. Applying a neurosolver.

The work described in this thesis is just the first step in the direction to achieve the
ultimate goal of this author, i.e.. to build a device that would mimic the functionality of
the human cortex. Such a device we will call a neurosolver. The network of artificial
columns as described in this thesis is the first incarnation of the neurosolver. The
neurosolver is a device that is capable of recording the behavior of any physical system
or object. The object can be observed by the system of sensors that detect its state. The
states and. more importantly. the patterns of their changes are input to the neurosolver.
The neurosolver modities its inter-columnar connections according to the adaptation
rules described earlier in this work. On the other end, each column has a determined
meaning and may output signuls that afflict the manipulators ready to alter some aspect

or aspects of the observed object.

The recorded information may be used to activate required actions of the manipulators by
presenting a goal. It is a certain state of the object, a point in the space of all possible
states. The neurosolver is capable of activating the path in that space that leads from the
current state to the goal state through a number of intermediate states. In the course of

that activation. some of the columns involved fire and control the manipulators in the
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same way as it was observed and recorded in the past. Through the sequence of the

manipulations. the required state of the object is achieved. The goal has been satistied,

the problem - solved: that is the origin of the nam= of the device: neurosolver.

The neurosolver starts to interact with the subject system as a tubula rasa. It gains all its
experience. and problem solving capabilities, through the interchange of the sensory and
manipulation control data with the system through the inputs and outputs. There is no
separate learning cycle - the neurosolver learns while servicing the system, though at the
beginning there is not much it can do. In the neurosolver described in this work. it is
possible, in addition to the mixed mode. to run separately in the learning or performing

mode.

In the further parts of this chapter of the thesis. the mechanics of the problem solving

capabilities of the neurosolver are explained. To better visualize the behavior of the

network, all considerations involve a simplification that each goal is initially given as an
activation of a single column. Usually, any complex problem requires a distributed

representation. That will be visible when the sub-goals are analyzed.

ARCHITECTURE

A neurosolver 1s a network of interconnected artificial columns. The connecuvity follows
the rules described in Chapter 3. Figure 28 illustrates the connectivity for 4 number of
columns that are shown in a cross-section ol the neurosolver. A column receives signals
from the sensors through a thalamic input that 1s a part of the external input to the
neurosolver. The cortical input is another external input to the neurosolver, and to each
column, but it does not come from the sensors. It is used to present the gouls. or in other
words tasks. for the neurosolver. It is also used to provide additional clues that may

contribute to the resolution of the problem. Each column contributes to the overall output

School of Computer Science Cuarleton University

-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




of the neurosolver. although only certain signals may be in fact used by the manipulators.
The cortical input signals activate the upper division of the column and are propagated to
upper divisions of other columns through the upper-upper links. When a column fires,
1.e.. its lower division gets highly activated. then the lower-upper links carry the signals

10 the upper division of other coluinns as well.

Cortical inputs

"
'

Thaiamlc\ ! <'g=£‘=\, i

inputs |

u . U T
¢ 7
v Y:/

Figure 2¥. A cross-section of a neurosolver.

The neurosolver that is analyzed in here has 4 matrix architecture. as illustrated in Figure
29. The number of nodes is the same for each row and column of the matrix. although
they could have different sizes without impacting the behavior of the network. Each node
is vonnected. through lower-upper and upper-upper connections, to its neighbors in eight

directions on the plane: vertical, horizontal and diagonal.

Figure 29. A top view of a neurosolver

That architecture 1s more suitable to describe the behavior of the neurosolver than a

completely inter-connected network. The model has both modes implemented. but the
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completely inter-connected architecture is difficult to simulate due to a large number of
connections that must be tested for growth in each cycle. The planar architecture be

much simpler to build in hardware as will be described in the last chapter.

LEARNING

The initial strength of the connections in the neurosolver is zero. that is no activity can be
propagated from one column to others. When the sensors start to communicate the

sequences of events occurring in the observed system. the connections between firing

columns are adjusted according to the rules described in Chapter 3. That process is

illustrated in Figure 30,

Figure 30. Learning 4 sequence.
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In the cross-section of a part of a neurosolver there are four columns: A. B, C and D. The

initial strengths of the connections between all the columns are zero. However, when, for
example. column A fires and that is followed by the firing of column B, then the
upper-upper connection between B and A iy strengthened using the feedback rule.
Additionally. the value of the strength of the lower-upper connection between A and B is
increased as well using the feed forward rule. If column C fires neat in the sequence.
than the connections between B and C are modified in the san.e way as between A and B.
Coiumn [ is the nest to fire in the illustration. Again, the connections between C and D
are moditied appropriately. After some time depending on the learning schemi used. two
chains are recorded as shown in Figure 31. When using the probabilistic learning rules,
the chains are tormed just after one presentation of the sequence. The hebbian schema

usually require more time to form the associations.

CALL
- r——y Vi’"’""
O A A
/ \ / ‘\ \\ / .\’\

Figure 31. Two learned chains,

The first chain links the upper divistons of the columns through the upper-upper
connections, It is created in the reverse direction to that of the tiring columns. If the
tinng of column B is treated as a consequence of the firing of column A, than spreading a
Jow level activity from B to A may be understood as a call, or a search, for the reason of
B tiring. The ~ame reasoning apphies 1o all columns in the chain. Therefore. it D iy
activated at a fow Jevel and that activity is propagated to C to B to A, than that is a search
tor the reasons of D firing, It D represents a desired state of the observed system. than
A-B-C-D is one o1 the possible paths 1o satisty that goal. The chan that s generated

hetween the upper divisions is, therefore. called a call chain.
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Newrosolver, A Newral Network Bys

The increasing strength in the lower-upper connections between A. B, C and D,
constitutes another chain. That is called an action chain. because if any of the column of
the chain gets highly activated. it will cause the next column in the chain to fire as well.
That type of chain requires many more repetitive presentations of the input seguence than

the call chain.

CALL TRCFS -~ A BREADTH-FIRST SEARCH

A call tree

There might be many causal sequences leading to a particular state of the system. There
might be, therefore. many chains leading to the sume node of the neurosolver that has
been interacting with that system. When a goul node is activated. like node G in Figure
32 ity activity spreads along all chains that veere recorded. It is not a single call chain
created anymore: it is a call tree. The activity will spread in steps into all directions that

may be the solution to the problem. One of such steps is illustrated in Frgure 32.
Y p p g

Figure 32 includes the nodes (shadowed) thut are already in the call tree. The arrows that
are outlined indicate the recorded direction of the call — the connections that were
strengthened in the past due to the columns firing in the opposite direction. One ot the
chains, or paths, of the tree has been labeled. Column G is the goal, thut is the root of the
call tree. Each of the subsequently activated columns, A, B and C. becomes 4 sub-goal to
achieve the muin goal G. In Figure 32, column D iy activated as the next sub-goal and
added. in that way. to the chain G-A-B-C-D. In the same step. many other new leases are

added n the same way to the tree.
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Figure 32, The construction ot a call tree.

Triggering the resolution

The activity initiated by the goal column spreads throughout the network unti! one of the
columns in the tree tires. That may happen due to the sensory input, as illustrated in
Figure 33, or through the accumulation of sutticiently high activity in the upper division

caused by action potentials arriving through several cortical inputs. Although the activity
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may continue to spread out along other branches of the tree. the propagation in this

particular chain is terminated. The external input to the firing column means that there is
an observation made now or a clue, or an axiom, set a priori, that indicates that this path
may lead to achieving the goal. The firing column. column D in Figure 33, is called the

trigger of the solution to the posed problem.

O OO0O0

/v“‘"\.

&
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O000000O0
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Figure 33. The resolution trigger.

Note that the use of un eye and a hand in the figures in this chapter is only a meuns to
better visualize the processes occurring in the neurosolver. The reader should treat those
symbols as representations of any type of sensations and manipulations. For example. the
trigger can be just a state of mind that is sufficient to trigger an action along the path
toward the solution of the problem. The effector that is represented by the hand can runge
from a robot arm to a voice synthesizer explaining the solution to the user using pre-butlt

rules associated with each node.

The resolution path

The trigger of the problem resolution. the column that fires first in the search path. is

subsequently. shut down. The firing and shutting down of column D means that the
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sub-goal represented by that column has been satisfied. If the lower-upper connection to

the next node in the tree in the direction toward the root, from D to C in Figure 34, is
strong enough. the action potential that it carries to the recipient may cause the next
column to fire. That is shown in the figure: column C fires. Similar processes occur now
in column C. There might be a connection from the firing column to the etfectors, so in
addition to perhaps triggering the firing of the next column in the search tree. the firing
of that column might have xome impact on the observed system because of the changes
to the activity patterns of the output of the neurosolver that impact the effectors. In that

way. a part of the overall task bas been carried out.
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Figure 34. The resolution.

Sensory-guided resolution

It may huppen. that the lower-upper connection between the firing coluinn and the target
columns in the call tree are weak. None of them can fire. In that case, the system cannot
decide what the next step in the resojution of the probleny should be. The resolution s

suspended warting tor  turther clues. The activity can agam be spread throughout the
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network in an attempt to search for the clues. The explorations may lead to partial

resolutions being found in other parts of the call tree. That may affect the system. For
example, one of the columns in the original path that was not getting sufficiently high
signals might suddenly receive a thalamic input and finally fire. The implication is that
the clue the neurosolver has been waiting for has been found. The resolution may

proceed further in this branch.

In Figure 35. there is a simple example of a sensory-guided resolution. After finng
columns D and C. the strength of the connection between C and B is too low to activate
B by the action potential alone. However. when column C fired. an action potential had
been sent to the effectors that altered the system. The change to the system has been

noticed by the sensors and column B is notified about that by receiving a signal through

its thalamic input. That. together with the activity caused by the input from column C. iy
sufficient to fire column B. The firing of column B may. in turn. cause another change to

the system. and column A may, in turn, have increased activity on its thalamic input.
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Figure 35. A sensory-guided resolution.

Although the tiring Is not sufticient to actinvate a complete resolution path. that can be
achieved through the mteraction between the mternal processes occurring inside the
neurosolver and external processes being observed by the sensors and controlled. at least

partially. by the neurosolver through the etfectors.

N
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If the neurosolver is used to solve a mental task. the input may be controlled by the

operator who presents the system with the known facts. In a situation where the
neurosolver has some doubts about the next step in the solution. it may generate
questions by including all options that are associated with the columns that could fire
next. That may be the facts that became known in the course of the problem resolution or
were known a priori. but the operator did not include them in the initial set of the mput
data, for example if they did not seem to be related or be of critical importance to the

solution.

The goal satisfaction

When a column fires. and is shut down by the inhibition action described betore. the
activity in its upper division, of course, disappears. Subsequently. all columns that have
been activated by the firing column in the call tree will also shut down as the result,
unless they receive input signals from other sources. Actually, the whole sub-tree of the
call tree is shut down. In Figure 36, such a case is exemplified by firing column A, A is
another column fired in the chain D-C-B-A-G. When it fires. the activity in the sub-tree

for which A is the root vanishes.,
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Figure 36. The goal satisfaction.
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The next column to fire, in the example. is column G. That is the initial goal with which
the neurosolver was presented. When G fires. the goal has been satisfied. The reason for
the existence of the call tree disappears. so ultimately. the activity in all branches of the

call tree ceases.

Through the mechanism of a call tree, a breadth-first search has been performed. The
resclution path. D-C-B-A-G in the example. generated a nuinber of output signals that

constitute the solution to the posed problem.

ACTION TREES

It may happen that certain sequences of events occurring in the system and corresponding
charges to the patterns of columnar activity happen very often. As a coasequence. the
strength of the connections from lower to upper divisions of the columns involved grow
considerably in the direction of the firing sequence. The connections become so strong
that they are able to induce a high level of activity in the recipients in the chain. Each of
the columny involved realizes a part of a certain action by carrying action potentials to

the effectors. Hence the chain generated in that way is called an action trec.

There is an action chain illustrated in Figure 37. The sequence D-C-B-A was observed in
the past so many times. that it is sufficient to fire column D to trigger the action, i.e.. the
lower-upper connections from D 1o C. from C to B and from B to A are strong enough to
carry the action potential on their own. The firing of each of the columns, D. C. B und A,
causes some chunge to the system. All those changes constitute the action that can be
associated with the action chain in this example, D-C-B-A. In more general case. not

only a chain but an action tree can be created in a similar way.
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Figure 37. The firing of an action tree.

HIERARCHY AND PARALLELISM - USING A NEUROSOLVER MODULES.

Hierarchy of neurosolvers

When examining the brain. it has been indicated that some cortical areas are
interconnected in hierarchies. That is the case with, for example. primary. secondary and

terttary visual areas. The topology mapping in each of those areas 18 different und
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encodes increasing levels of abstraction. Several neurosolvers can be used in a similar
way. Each of the neurosolvers may be truined with data at different levels of abstraction.
so different feature maps are generated for each of the neurosolvers. The concepts or
teatures are also associated between the levels. There are three such neurosolvers in
Figure 3K, At the highest level of abstraction. there is a call tree in Neurosolver 1. At
some point. column A is activated. That column has been associated with several other
columns in the lower level of the hierarchy - with those that represent related concepts or
constitute the higher level concept represented by A. The activity spreads not only in
Neurosolver 1. but also in Neurosolver 2. The same may happen between Neurosolver 2
and Neurosolver 3 when the activity reaches column B in Neurosolver 2. The search at

th= lower level of hierarchy may be critical to the solution of the problem. if. for

example. there is not enough evidence at the higher level of the hierarchy to undertake

any action. i.e.. to fire any column in the call tree at that level.

Neurosolver 1

;; <>
H
% B
> % cﬁ? N
Comer) < i Neurosolver 2

£
IR
Pf

Neurosoiver 3

Figure 3%. A hierarchy of neurosolvers.
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Parallel processing

A cull tree realizes a breadth-first search and. at least in the envisioned hardware
implementation, ensures parallel processing of the problem. That is only one aspect of
the parallel nature of computing in the neurosolver. Another type is to spread the activity
into different neurosolvers that have been associated. In Figure 39. the call tree active in
Neurosolver 1 has two branches: G-A-B and G-M-N. The last columns in both branches
have association with columns in other neurosolvers, therefore the activity is transmitted
and new call trees are generated in those neurosolvers. The search is now performed in
parallel in three o ferent neurosolvers. The neurosolvers may be organize” into a
hierarchy or may map just various aspects of the subject system. Finding sufficient clues

in any of the mups. may contribute to the solution to the overall problem.

Neurosoiver 2

—
N
B A <> Neurosolver 1
H
A
f ! pa
] <
Neurosolver 3

Figure 39. Parallel processing.

DISTRIBUTED REPRESENTATION AND THE NEUROSOLVER

Not every problem can be divided in such a way that nice hierarchies may be used in the
search for the solution. Usually. some non-iinearity 1s mvolved. <o the use of the

neurosolver as described in the previous section 1s net possibie or difficult. Actually. the
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same has been observed in the human brain. Luna's models of information processing are

very illustrative. but they do not constitute a complete description of the processes
occurring in the cortex. It has been found that in addition to the pathways that
accommodate the hierarchical view of the processing. there are other connections that

indicate 4 distributed nature of the processing.

The neurosolver could be used to process information that has a distributed form, like in
the example in Figure 30, Each state in the overall domain . a point Xe W, is actually a

vector of three states - each from a different sub-domain:
X =Xy Xa X where X;e 'V,

There is 4 neurosolver for each of the sub-domains Wy, An abstract X is activated when
X1 X and Xy are activated at the same time. Each of the components may be a part of
two different vectors, points in the matn domain. Such a representation is more compact
that one imvolving only one neurosolver for the domain ¥ with a column for cach state
X. An gabstract call tree in the domain ¥ involves, in fact. three call trees in each of the
sub-domaims. An example of such a tree is given in Figure 30. There are three points
involved A. B and C. that are in fact three vectors: (Aq. Ag. Ag). By, Bo. Baj and
(Cq. Ca. Cqy ot points in the sub-domuins - columns in each of the three neurosolvers.
The cull tree A-B-C. translates 1o three call trees. one in cach of the neurosolvers:

A1-B1'C1. A2-82’C42 arnd A3-B3- Cg.
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Neurosolver 1 Neurosolver 2 Neurosolver 3

Figure 400 A neurosolver in a distributed representation eny ronment,

The reader should note. that to use the neurosolver in such g configuration. 11 is necessary
to have a completely interconnected version of the model. This iy needed because the
associations between the doints in different neurosolvers will usually be in contlict with
the topology mapping. It may not. theretore. be possible to create o4l trees that connedt
each column only to its neighbors. Some patterns may require a distal column to be the
next node in the tree. Additonally. each layer of a mululayer neurosolver must be
completely connected with a neighboring layer. In Figure 3¢ each column i layer 1 s
connected to every column in layer 2. Simular connections are in place between layer 2
and layer 3. The connections between columns in layer 1 and 3 aie not needed m this

CdNe.

The use of hieraichies and distributed representation has not been actually tried in the
simulator. In the author's opinton. howes er. those concepts are very important and seem

to be natural for more complex applications of the neurosolver.
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NEUROSOLVERS AND ARTIFICIAL :NTELLIGENCE

The neurosolver is a learning machine that fearns trom examples. The examples in s
case are temporal patterns that are supplied by the sensors or by the operator, The
learning uses a self-organization algorithm. There is no teacher, so the patteins are
recorded und generalized without any heuristics to check their correctness. The

n=urosolver will learn a bad tehavior in the same way as a good one.

The examples can be treated as cases that are being stored s references for fuithes
computations. In that respect, the computing perforued by the neurosolver resembles the
case-based reasoning paradigm. The searches correspond to the retrieval of the related
cases that are used to infer the right response to the posed problem. The search has
breadth-first nature and is performed in a distributed and hierarchical manner. Figuie 41

illustrates an example of case-based reasoning exhibited by the neurosolver.
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Figure 41. Case-based reasoning in the neurosolver.

The coniext of the example might be a diagnostic system with several fevels of tests (-

VI). In part (@) of the figure. several cases are stored that lead to node A. A might be o
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fault in the context. The paths from X, Y or Z to A might represent various repair
services depending on certain condition at the first and, perhaps, at higher diagnostic
levels. If the fault A occurs, like in the part (b) of the figure, the call tree is generated
with the leaves being the nodes at level |, If one of the leaves is activated, e.g.. Y in the
example, then the chain leading to that node fires as illustrated in the part (C) of the
figure. ‘That might generate a repair advice, including the requests for additional
diagnostic tests if at some level the activity is too low to fire any column. All activated
columns that might fire are included in such request. After the test is done, one of the
involved nodes fires and the proper path is continued. It would be advantageous to use a

new . ~er with completely inter-connected nodes between two neighboring levels. A

simulated version could be optimized by providing of an algorithm that removes the

connections that never are utilized.

The collection of call and action trees can also be treated as a production system. If each
temporal pattern is viewed as a series of condition-consequence pairs, then what the
neurosolver encodes are rules. Each call tree corresponds to backward-chaining. Firing of
a column implies that one of the condition has been satisfied; firing of a branch
represents & match. A mixture of action and call trees may constitute forward chaining.
An example of forward chaining with the use of call and action trees is shown in Figure

42.
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Figure 42. Forward chaining in the neuroselver.

The rules corresponding to the A-B-C action chain fire, because the columns A, B and C
fired. The strength of the connection between C and D ;s sufticiently strong to fire D as
well. The connection from C to F is too weak (F does not belong to the action tiee) to
cause the firing of column F, but it is enough to excite its unper division. A call uce
spreads from there that may be triggered by an activity is some leal, S in the example,
causing the corresponding sub-tree (S-T-F) to fire. That ultimately leads to firing ot F.
so any action tree that starts from that node, F-G-H in the example, will be activated.
That might be treated as a continuation of the action started at A and the call tree that was

rooted in F represeats matching.

COMPARISON WITH BURNOD'S NETWORK

The last section of Chapter 3 is devoted to the comparison between the model of the
cortical column presented in this thesis and the model proposed by Burnod in [7] and |2].

In this section, the respective networks are also compared.
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From a practical point of view, the network as described in Burnod's original work is of
no use, because its design is driven by the biological data and the need to explain certain
capabilities of the cortex. Although the descriptions of how to create call and action trees
are presented, there is no explanation of what type of network and connectivity to choose
initially. Burnod describes how the cortex works, so all pathways are taken for granted,
as indicated by the research data. There are attempts in the first two parts of research | 7]
to explain how the brain grows, but at this moment such descriptions are of no practical

UNC.

Burnad's coworkers present some practical applications of his model in [2]. The network
that they use is hard-wired. The arrangement of the modaules is based on the connections
between the cortical columns and areas in the parts of the cortex that process visual
information. There are several sub-networks that correspond to the hierarchies in the

visual cortex. Fach module has:

a number of internal input-output connections with the neighboring units in the same

area,

¢ a number of internal input-output connections with other areas,

¢ anexternal output which is either a feedback or a response outside the network and
¢ the external input that is either a stimulus or a feed forward input from other maps.
The external connections are organized in continuous overlapping receptive fields.

That network was used for pattein recognition. In the course of learning, a pattern is
presented on the input (the retina) and the classification area has all modules inhibited
but one. i.c.. the module that represents the classification of the pattem. The activity is

allowed to spread in both direction, i.e.. from the retina to the primary area, to the
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secondary area. and on to the tertiary area and from the module represeating the

classification of the pattern in the reverse direction. After the connections are modified
according to the rules explained in Chapter 3. the next pattern ix presented. During the
recognition process. an upknown pattern is presented on the retina and all modules in the
classification area are set to E1 (the states were defined in Chapter 3). The call trees are
generated and one of them is triggered. As a consequence, one of the classitication
modules gets activated at the E2 level and suppresses the remaimng modules in that area

by inhibitory interactions. The pattern has been recognized.

The approach to network design taken in this thesis is diametrically ditferent. The
connections are arranged in regular patterns, so modularity and generality can be
achieved. It would be impossible to use the network presented in 2] in other than pattern

recognition applications. The neurosolver aims at being a general problem solver.

The learning of the neurosolver is also in deep contrast with the learning that has been
described above. This incarnation of Burnod's network is a pattern associator, while the

neurosolver learns the behavior of the system by observation.

In summary, Burnod's original work contains many ideas that were implemented in this
thesis. The subsequent attempts by Burnod and his colleagues to materialize the ideas are
not equally impressive as his former attempt. The work on this thesis started before their
results were published. Hence, there are many differences not only in the details of the

implementations, but also in the general frameworks.
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CHAPTERS

A neurosolver workbench

OVERVIEW

It would be very difficult to discover the behavior of the model presented in the previous

chapters without a proper user interface. It would be particularly difficult to observe the

changes in the state of the nodes of the neurosolver. There are many connections, so
every change to the level of activity of any column results in large propagation trees. It is
even more difficult to trace when a number of nodes is changing in parallel. To ease the
task of setting and modifying the neurosolver's parameters and observing the changes to

the activity propagation schemes, a testing/modeling workbench has been implemented .

Smalltalk-80 was chosen as an implementation platform for several reasons. Smalltalk-80
is an object-oriented language, so it is convenient as a modeling tool. The polymorphism
provides a mechanism for working with multiple model alternatives, so testing various
models of an object is easy. The same may be said about inheritance - subclasses of the
class of the model object can be used to test behavior nuances with the same common
core behavior. Last but not least, the user interface is relatively easy to build after the
learning curve has been overcome and thereafter easy to modify and maintain. Also, an

important factor was portability. Smalltalk-80 has been ported to many platforms and
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ensures that the image can be interpreted by the virtual machine on any of the supported
platforms. An IBM PC (lone was used for development. while the School of Computer

Science of Carleton University uses mostly Apple's MACs in the graduate labs,

Figure 43 shows the main display of the neurosolver test workbench. The left side of the
window displays the matrix of the neurosolver's columns. The number of columns that
are displayed depends on the size of the neurosolver. Each columa is represented by two
circles that correspond, in turn, to two divisions of the column: lower and upper. The
workbench permits the pattern of activity of the neurosolver to be set and observed. The
activity of each division is expressed by a shade of gray. Seven levels of activity have
been chosen, because Smalltalk provides that many built-in bitmap paiterns. There are,
therefore, seven thresholds of activity when the color of the division changes. In
addition, each column, as well as a division, may be examined and/or altered separately

through the use of the Smalltalk's inspector.
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Figure 43. The neurosolver testing workbench.

The right side of the window contains several control buttons. There are buttons provided
to change the mode of the neurosolver operation from learning to performing to a mix of

both at the same time. Those buttons are exclusive switches, i.e.. only one can be selected
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at a time. The remaining switches are action buttons that control the process of

computing.

STARTING THE WORKBENCH

The workbench is started by sending createAs:size:learningMode: to the class
Neurosolver. The first parameter indicates one of the three connection schema that can
be chosen when instantiating the neurosolver. The initialization method accepts the

following architecture requests:

« #simpleMatrix. only the neighbors along the North-South and East-West lines are

connected,
e #matrix, all neighbors are connected,
» #completelyConnected, all columns are inter-connected.

The second parameter in the method indicates the size of the matrix expressed in the
number of columns per each side. The third parameter indicates the desired learning
mode (described further in this chapter). The selected size and architecture carnot be

changed after the workbench has been instantiated. The learning mode can be altered.
For example,
Neurosolver createAs: #completelyConnected size: 7 learningMode: #probabilistic

will instatiate a neurosolver consisting of 49 completely inter-connected columns and
open a window with the workbench for that instance of neurosolver. The probabilistic

learning schema will be active initially.
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SIMULATING PARALLEL PROCESSING

Ideally the neurosolver should be a multiprocessor VLSI device. with cach processor
modeling a cortical column. Parallelism would be a natural mode of operation, assuming
that the input and output are folded into the same paradigm (i.e. all simultancous
sensations are transmitted at the same time). In the software implementation that parallel

character of processing must be simulated.

The operation of the workbench is divided into several phases. Before any processing can
take place, the user has to decide about the mode of operation and type of the learning.
That is described in the following sections. After that has been settled, the processing
loop is entered. With the help of mouse buttons, the thalamic and corticil inputs of any

column can be changed. Many columns might be selected depending on the needs. Next,

is selected to trigger the recalculation of activities of all columns. New
activity levels are posted to connections as action potentials, so they can be used in the
next step to propagate the activity throughout the network. At this point, the user can

enter another activity pattern of the sequence being presented. If the sequence has been

completed, the user can select EUZIEEUEME 0 inform the neurosolver about the new
pattern. Pressing that button does not clear the sequences that have been already learned

(i.e. the weight parameters of the connections are not reset).

To completely reset the neurosolver, so a new set of sequences can be presented, the user
can use That will reset not only the activities, action potentials and thalamic
inputs of all columns, but it will also reset all parameters that are used to calculate the

strengths of the connections.

should be used to guit the simulation session. There is a need to do some garbuge
collection after each session, so it is not possible to close the window using the tide bar

menu's Close that is the standard way of closing windows in Smalltalk.
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MODES OF OPERATION

The neurosolver can be run in one of the three modes of operation: learning, performing
and a mix of both. Each of those modes can be set by pressing a button with a respective
description.

Parturming

Mred lin the learning mode, the neurcsolver adjusts the strengths of its

connections in the direction (i.e. plus or minus) and by the amount depending on the
changes in the activity pattern, as described in the previous chapters. That mode is used

when learning phase must be separated from the performance phase.

There are two learning schema that can be used by the neurosolver: probabilistic and
hebbian, as indicated in the description of the model. The schema can be activated by
sefecting an entry in the workbench menu that displays the schema that is not currently
used. If that schema is selected it becomes the active one and the label in the menu is
changed to another alternative as illustrated in Figure 44.

—

TRERNS

inspect Module ; Inspect Module
inspect Lipper Division Hivspect Upper Division
Jinspect Upper Outputs| inspect Upper Outputs)
nspect Upper Inputs inspect Upper Inputs
inspect Lower Divesion) pect Lower D:
lnspect Lower Outputs [nspect Lower Outputs) Figure 44. The workbench popup menu.

In the learning mode, the neurosolver learns the sequences of the firing columns. In a
biological equivalent of the neurosolver, such signals would be coming from the
environment via sensors and thalamus (only the olfactory system is an exception to this
rule). There are various thalamo-cortical tracts and all of them end up somewhere in the
cortex with connections to individual neurons of a column or, usualiy, many columns.
That is simulated in the workbench by pointing with the pointing device to the specific

column and using the left mouse button (the RedButton in Smalltalk-80 jargon) to

School of Computer Science, Carleton University

.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



wxzesad Yo

increase the thalamic input to a maximum, as illustrated in Figure 45, That will cause the

column to fire when the recalculation is requested.

COCOOOOPO
Q
©
@

Next pattern

DOQOO
Q0O
‘elele]l Jeole)
‘ejo) 1elele)
‘olelol Jeole)

‘eleleleolelo)e)
b

Figure 45. Using mouse to simulate thalamic inputs during learning.

To recover from mistakes, the right mouse button (the YellowButton) can be used to

reset the thalamic input of the column.

After pressing

that instructs the neurosolver to recalculate and propagate the
patterns of activity, the active learning schema is applied to modify inter-modular
connections as described in Chapter 4.
Leaming

Mixed

The performing mode can be used to test the behavior of the
neurosolver after learning, or in other words to use the neurosolver to compute solutions
to problems in a given domain. It is useful for the case when further adaptation (learning)
is not required or desired. In this mode, it is possible to change the thalamic inputs of the
columns, reflecting the current state of the environment (perception), and cortical inputs,
representing goals to satisfy. The mouse buttons can be used as illustrated in Figure 46.
Pressing a mouse button alone increases the value of the respective nput; using the

mouse button with left Shift button decreases the value of the input.
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Figure 46. Using the workbench for computations.

To solve a problem, it is required to activate a goal. As explained in Chapter 4, a goal is
presented by activating the upper divisions of the columns representing the desired state.
‘That is achieved by increasing the cortical inputs that may represent, for example, wishes
coming from the limbic system. The current state is set by activating the thalamic inputs
of all involved columns. The color of the column representing the goal changes

depending on the activity applied.

Depressing JRETISEEEY causes recalculation of the activity and propagation throughout
the network. A call tree, as described in Chapter 4, is constructed. The call tree can be
abserved by changing colors of the columns involved. If a column fires, its color changes
to black. It may trigger other firings, so the solution path to the presented problem is

marked by columns changing the color to black.

Note, that the firing columns represent the output of the neurosolver, that could be used
to modify the environment. Any change to the environment would be, in turn, feed back
to the neurosolver via the sensors. The person interacting with the workbench simulates

that behavior. If certain columns are assigned the labels representing the concepts or
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features. then a shade of gray appearing at any ot those columns may be a question for a

clue. The labels of the columns that went black. constitute the solution of the problem

Leaming ]Performing
he mixed mode. in which the neurosolver solves the presented
problems according to the knowledge that it learned in the past. but sull adapts 10 the
changes in the environment. The behavior that the neurosolver exhibits in this mode is
very close to the beh vior of biological systems. However, continuous adaptation is not

always needed or even desired in engincering applications.

The use of the workbench in the mixed mode does not differ from the performance
mode. The only difference is that after recalculating the activities of the columns, the

neurosolver adapts the weights of all connections to reflect the last observed patter.

INSPECTING THE NEUROSOLVER

The workbench provides the means not only to observe the changes in the activitics of
the columns via the graphical user interface, but also to inspect mternal states of the
integral parts of the neurosolver. The menu that can be invoked with the middle mouse
button (the BlueButton) is shown in Figure 47. It contains several entries with winch
many aspects of the neurosolver, an individual column, division or connection can be
examined. After selecting any of the menu entries, the cursor changes to a crosshair and
the systems waits for the user to point to the desired column. After that has been done, a
Smalitalk inspector window is opened for the chosen item. The inspector can be used to
display the current values of the item, its attributes or related objects as well as o change

any of those values.
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inspac Upper Divisiord
Inspect Uppew Outputs
Insgeerd Upper inputs

inspect Lower Uivsion

Inognet Lown: Dupudts Figure 47. The inspector menu.

Selecting opens an instance of the inspector for a column object. With

inspect Moguie

and PRl the state of the upper or lower division can

inspect Upper Division

inspect Upper Cutputs i inspect Upper inputs und

be viewed respectively. Inspect i ower Qutputs

open inspector windows for the collections of outputs and inputs of the upper and lower

divisions respectively.

THE NEUROSOLVER PARAMETERS

There are a number of system parameters that can be set before running the neurosolver
workbench. The following parameters can be modified during initialization «¥ the

Division class:

LowActivityThreshold. used in learning to determine whether the column is

inhibited,
o HighActivityThreshold. used in learning to determine whether the column fired,

« LowerUpperThreshold. when exceeded the lower division inhibits the » er

division and the whole column,

o LowerThreshold. when exceeded. the activity of the lower division is sent as an

action potential on zll of its outputs.

LearningRate can be modified in the initialization of the Connection class to set the

desired rate of the learning in the hebbiun mode.
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Other constants used throughout the system can also be modified. but usually that would

require several other related modifications.
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CHAPTER 6

The rat, the maze and the neurosolver

OVERVIEW

Rats running in mazes are commonly used in research labs to test various aspects of
intelligent behavior. In this work, a simulated rat maze has been built to try the
neurosolver as a simple brain of an artificial rat running in the maze. The maze is shown

in Figure 48.

=

Aa

&
L

Figure 48. Rat maze with rat controlled by a neurosolver.

The maze windows consists of two parts: the maze itself and the area with the control

buttons. The maze is a two dimensional matrix of a customizable number of elements,
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squares, with some sides of the squares. maze's walls, erased. When the walls are

missing, the neighboring squares become the successive steps of the sume path: i.e.. the
rat can move from one square to another. There are two objects that can be positioned
somewhere in the maze: the rat and the food, a piece of cheese. The food is stationary,
but the rat can move from one square to another - if there is no wall between the squaies.
The rat's movements are controlled by a neurosolver. Each square of the maze is assigned
a column of the neurosolver. It is assumed that the rat can perceive the walls, theretore it
will choose only valid movements. The neurosolver obtains the goal signal to pet the
food as a cortical input ("hunger” + position of the food) and detects the current position

of the rat (thalamic inputs). The rat runs, when instructed, until the food is found.

The maze can be constructed in many ways using the maze construction buttons. The rat
can be controlied by the second set of the buttons. When the rat is running, it may learn
selected) or may have the learning capability disabled ( selected).

are exclusive switches (Smalltalk’s OneOnSwitch).

BUILDING THE MAZE

To set the maze to the construction mode, it is necessary to press

mode is exclusive with the running mode: i.c., only one of EEEIISREIE

can be set (OneOnSwitchused again). One of the construction buttons, , or
must be selected as well. By default, is selected initially. In the wall

construction mode, the cursor changes to a little picture of a part of a brick wall. The
cursor can be used to erase or create walls of the maze squares. Initially, all walls are
present. An existing wall can be erased by clicking the right mouse button (the
YellowButton) on the wall. A wall can be posted by the same action applied to the left
mouse button (the RedButton). Distances from the cursor position to all possible wall

locations are calculated and the minimal distance indicates which syuare is affected.
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After is selected, the cursor changes to a small picture of a rat indicating the rat
placement mode. The position of the rat can be changed by clicking with the left mouse

button (the RedButton) inside one of the maze's squares.

The position of the food can be changed by exactly same action with

The cursor has a shape of a piece of cheese in the food placement mode.

St

are as well exclusive switches (OneOnSwitch).

CONTROLLING THE RAT

After constructing the maze and positioning the rat and the food, the rat is ready to begin

should be selected. The

its search for the food. To turn the running mode on,

two buttons that are attached to can be used to control the rat. Pressing

causes the rat to move one position. Afier making the move, the rat stops waiting for the
is selected, the rat starts to move and stops only after the

next signal. If

food is found. Control-C can be used to break the movement, if the maze has been

constructed in such a way that it is not possible for the rat to find the food.

The rat can run by itself depending on its expertise or can be guided by the pointing
device. In the first case, several strategies have been tried. They can be chosen by simple
modifications to the Smalltalk code. The simplest strategy. but probably the closest to the
natural behavior, is to use random direction of the movement with the only restriction
that the rat cannot move backwards to the position from which it moved before. That
randomness is applied only if there is no memory of the past experience. If that is the
case, the rat moves to the square with the strongest activity in the neurosolver's columns

associated with the neighboring squares. That strategy has been chosen as a default.
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Another strategy is an algorithm that guides the rat to systematically visit all allowed

squares: i.e.. all paths are taken until the food is found. That applies only in case when
there is no activity in the columns associated with the neighboring squares. As before, in
such a case, the rat moves toward the highest activity. This strategy does not possess the

same biological appeal as the former.

The rat can also be guided by the pointing device by the operator. When

selected, the cursor changes to a picture of a hand. Clicking the left mouse button (the
RedButton) with the cursor positioned in any square that is a neighbor of the square in
which the rat is currently located. instructs the rat to move to that location — assuming
there is no wall in the way. The activity of the columns associated with the neighboring

squares is not taken into account in this case.

The last control scheme is analogous to the learning techniques with a teacher. In the
former schema, the learning is self-exploratory. The learning with a knowledgeable
teacher is faster, because many paths that are imrelevant need not to be visited. Both
algorithms for automatic control guide the rat into all possible paths, therefore the

learning takes much longer.

CONCLUSIONS FROM THE RAT EXPERIMENTS

In the course of the experiments, it has been proven that the neurosolver can control the
rat in the maze, assuming that the mapping is in place. The mechanism of a call tree is
used to spread the activity from the position of the food (the goal) into every direction
that has sufficiently strong inter-columnar upper-upper connection. The purpose of the
call tree is to search for the current position of the rat. A time-out is used to move the rat

in cases when no path exists yet between the current position and the goal. When there is
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such a path, the rat moves toward the food until it is reached and. of course, devoured.

Depending on the distance from the food, the learning can be faster or slower.

After learning one path, the rat was moved into another part of the maze. Another path
has been learned in the same way as the first one. The same process was repeated for
many initial positions of the rat and fixed position of the food. After that, the rat was able
to determine the proper path much faster, even if started from a place that had not been

tried before.

When the position of the food was changed in the next series of experiments, sometimes
it was easier for the rat to find the food, because parts of the paths that had been learned
before could be used. Usually, however, a new learning session has to take place before

the rat is efficient again.

The conclusion from the experiments with the rat and the maze is that the neursolver
used to control the rat learned the orientation in the maze. In that respect, the behavior of
the artificial rat is similar to the capabilities of healthy live rats running in mazes.
Experiments in which healthy rats are competing against rats that were decorticated have

been designed to show that such capability is provided by the cortex.

The rat maze is a very simple application of no practical use. The capability to create
topology mappings is at least as important for a rat to run in a maze as the capability to
record trajectories. In the next chapter, the capability to create topology mappings will be

considered as a possible enhancement to the model.

During the experiments with a running rat, several improvements to the model became

evident. The most important were:

¢ the ability to recognize paths without an end. so the rat does not follow them,
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e collapsing the learning and performance phases. so the model is closer o its

biological counterpart, and

» preventing self-exciting pairs of columns.
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CHAPTER 7

Conclusions and directions for further work

An artificial column presented in this woik exhibits very interesting behavior when

applied en masse in a proper way. In the opinion of the author, it is worth to pursue the
research. There are many shortcomings that must be dealt with before the neurosolver
can be used in any practical application. Much more research will be needed before the
neurosolver reaches its ultimate capabilities as envisioned in Chapter 4. In this section,
the deficiencies are described and future plans for overcoming some of the problems and,

generally, improving the neurosolver are indicated.

INADEQUACIES OF THE MODEL

Architecture

Burnod's upper-upper connection proved to serve well as the basic element of the model
that provides the capability to create a call tree. However, the ability to create action trees
required to modify Burnod's model. The lower-upper connection that has been added to
the model serves that purpose. The interactions between the upper and lower divisions

had also be implemented to provide a firing mechanism.
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A completely interconnected network is ditficult to simulate in software because of the

large number of computations that are required. The model that is connected along the
vertical, horizontal and diagonal lines requires that the columns of any pattern must be
neighbors in the neurosolver. Otherwise, there are no connections, so the pattern cannot

be learned.

Learning rules

The learning rules that use simple probability appeared to be too weak to develop more
complex behavior in a regularly interconnected network. Their complexity was increased
to include more statistical factors and additional probabilities were defined. A formula
for the strength of a connection that uses a combination of the probabilities proved to be
better to record temporal relationships. The modified rules proved to be suitable for the
basic features of the neurosolver, i.c. creation of call and action trees, They were

relatively easy to implement, because the neurosolver is simulated in software.,

The hebbian learning tried in the model proved to be much weaker than the probabilistic
learning. The hebbian learning uses simple rules that modify the strength of a connection
by an amount that is a function of the previous strength and a constant. If the constant is
small, the learning is slow. If the constant is larger then there are many action trees
created quickly. From the computational point of view action trees are less desired than

call trees.

Osciliation

A mechanism that prevents two columns being self-excitatory had 1o be built. Without
such a mechanism, if one of two columns that are neighbors in two different call trees
that spread in opposite directions sends an wction potential to another, then the latter

responds with the same signal. That happens because the activity is prone to spread in the
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opposite direction along another call tree. Although initially the signals are lower than
the firing threshold, they are amplified in an oscillating loop and finally both columns

fire.

Cycles

Although the mechanism that prevents a self-excitatory pairs of columns was
implemented, it is still possible to have sequences that generate larger cycles. If one of
the the columns gets activated, the activity spreads to all columns in the cycle. The
columns in the cycle will be sending stronger and stronger action potentials and, finally,

some of them may fire.

System stability

The neurosolver is not guaranteed to stabilize after some activity is applied. Usually, the
system stabilized if small number of sequences were stored. However, if there are many
overfapping trees, than the equilibrium might not be achieved at all. The neurosolver is

not formalized enough to attempt to find the rules that govern its stability.

By applying the anti-oscillation mechanism, improving the learning formulas and adding

the shutting down mechanism after a column fires the stability was improved.

Limited storage capacity

The behavior of the neurosolver is much closer to the ideal if only a small number of
patterns are recorded. When that number grows and, additionally, there are many

overlapping trajectories registered. than the system computing capabilities deteriorate.
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Fixed thresholds

All thresholds are fixed in the model. They were chosen through experiments. It is still
not certain what activity levels should be used. for example. in a call tree or in the
trigger. Some call trees require higher activity in the root than others. That might be
consistent with biology, but the use of activation levels in the neurosolver requires

further investigation.

/O system

Any column in the network contributes to the 1/0 system of the neurosolver. Usually,
that is neither desired nor required. However, there is no mechanism in the model that

would provide an adaptable I/O system,

Software impiementation

A software implementation is a convenient way to simulate the behavior of the
neurosolver. However, it is very inefficient due to the large number of connections to
manage. Another deficiency of the simulator is that it is implemented on a sequential

computer, so the parallelism is artificial.

DIRECTIONS FOR FURTHER WORK

Learning schema

The hebbian modification rules used in this work were very simple. To be a viable
alternative to the probabilistic rules, they would have to be extended to include more
important parameters that do influence the associations between columns, like the decay

and inhibition factors. It was suggested earlier that it would be possible to implement a

School uf Computer Science, Carleton University

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



hebbian equivalent to the probabilistic rules that were used. That work needs further

exploration. There are many formulas used in the theory of classical neural networks that

should be tried be tried.

In the model presented in this thesis, the action potential is active only for one step, a
tick, of the simulator. It would be beneficial to make the action potential last longer, so
more distant elements of learned sequences can contribute to the activity of a column.

The problem with using only first order action potentials is illustrated in Figure 49.
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first order action potential  second order action potentials

XX ) b o

3 X

Figure 49. The problem with crossing paths and its solution.

Two trajectories are learned: from column S to column A and from column T to column
B. The patterns cross at the column X. There is neither path from column S to ¢column B
aor from column T 1o column A. However., when a call tree is activated from column A,
one of the branches leads to column T. Similarly, if column B is the goal. the search

leads to column T and to column S. It happens because neither of the successors of the
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column X in any of the call trees is influenced by the nodes that precede the crossing

point. The activity is lower in the branches to the lett of column X, because the strengths
of the connections are based on probabilities that use statistics collected during the

learning.

If a second order action potential was used. i.e.. such that takes two simulating steps,
ticks, to get to the receiver, than the problems would be overcome. The node that
precedes the crossing point at column X, would contribute only to the successor of
column X that belongs to the same learned trajectory. The tormula for calculating the
activity of a column would have to reflect that influence. Each connection would have

not one but two strengths: for the first and second order action potentials.

The idea of a second order action potential might be expanded to a general case of
n-order action potentials. An n-order action potential accompanicd by proper formulas
for the strength of the connections might be helpful in overcoming the problem with the
capacity of the neurosolver to store various patterns that is poor in the carrent

implementation.

Use of the temporal inhibition

The modification rules for the connections were stated only for excitatory cases. Suivilar
rules can be defined for the case of one column inhibiting another. The algorithins tor
that have been implemented in the model, but were not tested. A considerable amount of
time will likely have to be spent refining and expanding those rules. The schema for
learning inhibitory relationships would be analogous to those used tor the excitstory

connections.

The interaction between the excitatory and hibitory rules is another arca that shocid be

thoroughly investigated.
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Adaptable columnar parameters

The internal parameters of each column were fixed in the model. Various values were
tested and those that satistied the requirements best were put in place. Of course, this is
very subjective. It would be much better if all parameters were adaptable in a way similar
to the modification rules for the connections. In that way, each column could have
developed a behavior that best suits the representation that the column stands for. In
particular, the finng threshold might be tuned to the overall level of activity in which the

colummn is involved .

To achieve adaptivity of the columnar parameters, better understanding of the processes

that occur inside the biological cortical column will be required.

Adaptable intra-columnar connections

The connections between the lower and upper division of the column were fixed in the
model. That is not what happens in the cerebral cortex. The adaptivity of those internal
connections might be important, though without further investigation it is hard to say

what is exactly the impact of those connections on the behavior of the network.

Topology mapping using lateral inhibition

In this work, the topological mapping has been taken for granted. Another technique. for
example the Kohwaen algorithm, was suggested for the mapping. In Chapter 2, however,
it has been indicated that there are local inhibitory interconnections between the
neighboring columns. That inter-connectivity resembles the connectivity between nodes
in the Kohoren architecture (in fact any on-center-off-surround architecture). Those
mhibttory connections might be used to generate topological maps. That process could

precede the learning of temporal sequences that was the subject of this thesis. More
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interesting, however. would be to let the process continue, allowing in that way

re-mapping of the topological relationships if the environment changes. The neurosolver

could, hence. evolve with the system that it controls.

Associating inputs with sensors and outputs with effectors

In the model. each column may receive external input and generate external output. The
input signals are incoming from the sensory system. The output signals are trunsmitted to
the effectors that may manipulate the subject system. The signals are transmitted withowt
any loss in their values. That is different from the equivalent biological systems. The
afferents and efferents of each column could also be trained, so they do not have 1o be
assigned a priori and may change in time in an attempt to adapt to arising novelties, For
example, if the cffectors were severed or altered, the neurosolver might have tried to

utilize the resources in the best possible way.

VLSI

The neurosolver from its conception was thought 1o be a universal computing device. In
that expect. it is very similar to electronic devices. Any chip can be used in many
applications without re-engineering it. What iy required to change the functionality

performed by the chip is just an alternate connectivity with other devices.

The ultimate neurosolver should also be implemented in hardware. Depending on the
task and the size of the neurosolver chip, only a single module. a chip, or many modules
would be used. If the problems that were indicated carlier in this chapter were solved,
then the neurosolver would be completely self-programming, i.e. the interfaces to other
devices as well as inter-connectivity between different neurosolvers would be generated

automatically. It would be possible to have a library of pre-programmed chuips that would
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be used in additional learning sessions during which they would accommodate each other

and adapt to the system within which they would work.

The software simulator has three types of inter-columnar connectivity schema possible,
but the completely interconnected model is hard to use because of the large number of
connections that are required to test and, perhaps, modify in each cycle. That might be a
lesser problem in a hardware implementation. An example of possible hardware
architecture is illustrated in Figure 50. Each node, in that example, sends vertical and
horizontal double links that are connected with all other links. The connections are
adaptable and assigned in the way suggested in the figure. The rows correspond to the
columns that precede another in a sequence. For example, the connections o and P are
maodified vor the sequence B — D. o corresponds to the lower-upper connection between

B and D, and B - to the upper-upper connection between D and B. The case for D —» B is

shown as well.
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Figure 50. A possible hardware architecture for a neurosolver.

The architecture proposed in Figure 50 implements a completely inter-connected
neurosolver. There are no simulation cycles, so every column is updated at the same

time. 1t was a challenge to built such parallelism into the software simulator. It will be
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even more challenging to provide an adaptation mechanism that could be used in the

implementation of similar functionality in hardware.

It must be noted that computing paradigm that uses connection strengths based on

probabilities might be ditficult or itapossible to repeat in hardware.

Applications of the neurosolver

To employ its full potential, the neurosolver needs to be applied in more realistic and
useful applications than the simple rat applicavon described in this thesis. In that
application, the feature most used was the ability to perform a breadth-first search. The
sensor triggering capability was not used explicitly. Another important teature, e, the

partial parallel goal specification was not needed at all in the rat application.

Some of the applications that would exercise all aspects of the computational paradigm
of the neurosolver were suggested in Chapter 4. One of them is a robot controller that
would provide the robot with the ability to visually guide its movements. Another
application is a diagnostic system that uses the learned trajectories relating to past system
deficiencies and recovery routines to diagnose complex failures by dividing the problem
and resolving each sub-problem in parallel. In a more sophisticated incarnation of the
latter, the neurosolver would act as a controller that can learn the behavior of a system,
so any abnormality can be detected and a correction procedure performed or suggested to

an operator.

The neurosolver will reach its ultimate form only through enhancements that are the
conx quence of attempts to use it successfully in more and more challenging

applications.
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APPENDIX A

Formal neurosolver

In this appendix, an attempt is made to formalize the neurosovler as a state machine.
First, we define a Neurosolver universe to be a system:

U=<CE R M>

where C is the neurosolver € is an environment, the system that is being watched after, #

is a system of sensors or receptors and M is a system of effectors or manipulators.
We define the Neurvsolver € as:
C=<N.5.8>

where 1 is a set of columns (nodes), that, in fact, are pairs of upper and lower

divisions:
N={NI.N2..NZ}.  N{=(NU{.NLL):
 is the domain of the Neurosolver states:
d=(51.8:..8:.)

and cach state 8, consists of the states of all columns:
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$ = (SNi1. SNa2....SNz ). A=1.2.3.

The state of column N, can be represented as a pair of an upper division's state and o

lower division's state:

Snx = ( SUNk- SLnk )-

@ is the Neurosolver's behavior, and it consists of two functions: state transformant J

and adaptive function J:

8=(J.F)

The state transformant defines the Neurosolver's behavior as a state machine, while the

adaptive function determines its adaptive capabilities.
J.(4.9)- (4 3C)

where 3 is the state domain, and J is the domain of the Neurosolver's inputs consisting of

two components: T, thalamic (external) inputs, and JC, cortical (intcrnal) inpuis:
I=(d. I h..)
& = (hr e ) A=1,23..
& = (e e Fong )
e = Clenn Ionz. dona )

Each Iy, represents the thalamic input, and I, represents the cortical input o a

column.

The transformant J can also be expressed in the following, distributed way:
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I=Jrne k=1, 2, K, T (i 3TN 3CNic ) = (BNk» 8Caw )}

ICno = ($1Cno. 2000, $3Cn0.-.)
IACno = L IONg: Noe T, oy i, A=1.23..

If ¥ = §2 (i.e. the column outputs to all others in the Neurosolver), then:

and:
ICno =3¢

There are two divisions of a column Ny, and each of them has its own state: SUnk and

SNk Each partial transformant TN consists of two components upper:
Tun: (LN SUNK. TNk, JONk ) > (BUNK. ANk, IC)

and lower:

Tina: (BLNK. BUNK, #TNK. ICNk ) = (BUNK: LNk, 3C ).
Finally, for ¢ach column, we can define the following transformants:
o upper division state transformant:

Sy =Tw (SL. Su. IT. IC)

e lower division state transformant:

SL=Ta (SL. Su. IT. IO
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¢ internal feedback function:

IC=Tou (SU.IT. IC)

Calculations of T, Ty and T,y usually tnvolve a system of inter-nadal and ter-

divisional connections with appropriate strengths.

The second component of the Neurosolver's behavior, the adaptive function J. is a novel
entity for a state machine, since it allows the state tranformamt J 10 be altered. so the
machine adapts to changes in the environment. If we designate 2 as the domain of the

state transformant J, we have the following:

F& -4

The function is realized by modifications to the strengths of the inter-coluwmmar
connections. Similar considerations for the state wransformant lead us to the following

partial adaptive functions for each column:
Fyu: 33U = 24U
FsL: &L — 3L
FoU: 3oU = 20U

Environment € interacts with the Neurosolver through receptors 8 and manipulators M,

creating in that way an external feedback loop.

Receptors supply the Neurosolver with the image of the environment.
R= ( wa: a=1, 2,..., A, Rﬂ = URuﬂ. ﬂ = 1..B, Ruw £ *‘)"I'N!}, Nﬁ € ﬂu C 1 }

If B = Z, ie. every column receives an input. then:
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R={ Rz a=12.. A Rg="RAN. VNe. RAN: € = d1n }
Manipulators modify the environment depending on the state of the Neurosolver:
M= My y=1,2,... T, My="IMy, €= 1.E, Myg: bLne = & Ne € Ty R D Ty}
If E = Z, ie, cach column contributes to the output of the neurosolver, then:
M={Mey=1.2...FMy="UIy. VNe N an— E |

Both receptor and manipulator functions are also realized by a system of appropriate
connection strengths between columns and receptors or manipulators. They can be
adaptive in a manner similar to the state transformant, but we have chosen to fix

interactions with the environment.
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APPENDIX B

Smalitalk-80 code for the model of a cortical
column

The code that is presented in this chapter is not a complete implementation of the
neurosolver. Only the most important parts of the model are included. Less important

details of the model and the user interface are omitted for clarity.

The code does not include the Rat Muze application.
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OneOnSwitch variableSubclass: #Neurosolver
mstanceVariableNames: ‘columns mode learningMode
classVariableNames: "
poolDictionaries: "
category: ‘Neurosolvers’

Neurosolver comment:

Neurosouver is a network for problem solving. It consists of interconnected columns with
high degree of organization. The organization may be achieved by a self-organizing
algorithm, or may be specified explicitly. Some of the columns may have additional
external inputs (thalamic) and may output their signals outside the network
{maniptiators). Those additional interfaces are the basis for the external feedback.
Internal feedback is realized by high inter-connectivity between the columns.
Neurosolver may be a flat architecture, but its behavior is more interesting when some
hierarchies are involved. Any hierarchy may be included in a flat model, but the
architecture is easier to deal with if there are many intercc .aected cortical layers
representing levels of abstraction. Such maps may be self-organized segarately and
later brought together through associative algorithms. The third step would be learning
to solve problems.

NEUROSOLVER METHODSFOR: ‘control’

learningStep
“organizes the activity calculations and connection adjustments during the
learning”
Cursor wait showWhile: |
selt calculateActivityPattern.
self actualizeActivity.
self calculateModificationFactors.
self adjustConnections.
(learningMode = #hebbian) ifTrue: [self resetinfluenceFactors].
selt resetAfterFiring.
self setNextTick.
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performanceStep
"organizes the activity calculation scheme during the performance”

"for every column recalculate activities, determine outputs and show all tiring
columns”

Cursor wait showWhile: |
self inhibitAfterFiring.
self resetCurrentActivity.
self calculateActivityPattern.
self commitActivity.
self propagateActivity.
self resetCorticalinputs.
self setNextTick,
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Object subclass: #Column

instanceVariableNames: 'upperDivision lowerDivision upperLowerConr.ection
lowerUpperConnection columniD neurosolver positionPoint '

classVariableNames: "

poolDictionaries: "
category: 'Neurosolvers'

A column is a unit loosely based on a cortical column. It consists of two
divisions, lower and upper, and many connections to other columns or other parts of
the system (receptors, manipulators).

A column represents a concept or a part of a concept in the organized network. It
connects to other columns which are somehow related to it. That inter-connectivity is
achieved by self-organization or built-in by the network architect.

The basis for the active problem solving is an ability to generate sequences,
since the activity representing a goal must be spread through the network to search for
the solutions. In this model, the activity of the upper division represents a sub-goal in
the search tree. That activity is prolonged (i.e.. the sub-goal is stacked): it ceases only if
the columns representing its parent's goals are deactivated as well, or if the column
fired (high activity in the lower division occurs). In the first case, most of inputting
columns stops sending their signals (they could be themselves in the same situation as
the column in question). In the second case, the lower division inhibits the activity in the
upper division. There might be an action associated with the firing of the lower division,
for example a sound or movement generation, which makes the cortex problem
capabilities actually useful.

If the same set of child columns is the cause for firing the parent column, that
column can is equivalent to a constant. if there are many such sets, the column
exemplifies a variable (it is a place holder).

CoLUMN METHODSFOR: ‘initialization’

initialize
“imtialize a colurmn”

"create upper division”
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"The lower division transmits its activity all the time (i.e. the threshold 1s always

0). Spreading of the column’s activity represents the search for the solution to the
problem expressed by that column.”

upperDivision := (Division new)
initializeFor: self
withActivity: 0
threshold: (Division upperThreshold).

“create lower division”

"The activity of the lower division expresses the degree of the satisfaction of the
constraint (goal) representec by this column. If that degree is high enough, the sub-
goal can be assumed as achieved and the reason for the activity in the upper division”

lowerDivision := (Division new)
initializeFor: self
withActivity: 0
threshoid: (Division lowerThreshuld).

“intra-column upper-lower and lower-upper connections are realized taken into
account while computing the activity of the column”

~self

connectTo: conn

| newConnection |
“connect the column’s divisions with the divisions of the column passed as the
parameter"”

"There are two types of inter-conlumnar connections: upper-upper and lower upper. *

“upper-upper - feedback direction”
newConnection := UpperUpper new.
newConnection initializeWith: 0 from: self upperDivision to: conn upperDivision
self upperDivision outputs add: newConnection.
conn upperDivision inputs add: newConnection.
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"lower-upper - feed forward direction”
newConnection = LowerUpper new.
newConnection initializeWith: 0 from: self lowerDivision to: conn upperDivision .
self lowerDivision outputs add: newConnection.
conn upperDivision inputs add: newConnection.

CoLUMN METHODSFOR: 'control'.

calculateModificationFactors
“count exciting or inhibiting columns for both divisions"

upperDivision calculateModificationFactors.

lowerDivision calculateModificationFactors.
commitActivity

"commit the calculated activities. It has been postponed until now, because the
action potentials might have been set incorrectly, before we know whether the columns

fires inhibiting, in such a case, the upper division"

upperDivision commitActivity.
lowerDivision commitActivity.

“The lower division inhibits the upper division. High activity in the lower division
means that the subgoal represented by that division is satisfied. That happens if the
activity of the upper division and the input from the outside (external feedback loop)
sum up to a value higher than the threshold.”

self highActivated ifTrue: [upperDivision realActivity: 0.0}.

inhibitAfterFiring
"The column is not responsive for a while after firing”

(((upperDivision wasPrevHighActivated)
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or: [upperDivision wasHighActivated])
or: [upperDivision highActivated])
ifTrue: [upperDivision resetinputPotentials).

modifyConnections

"if the column fires (lower division's activations goes sufficiently up) we adjust
connections from the upper division to all columns which were highly activated betore.
This strenghtens the preferred paths in the search tree.”

self fired ifTrue:
[upperDivision outputs do:
[ :connection |
connection receiver column firedBetfore

ifTrue: [connection increasePositiveStrength]

"perform the adjustments for the inhibitory connections”
self wasinhibited ifTrue:
[ upperDivision outputs do: | :connection |
connection receiver column firedBefore
ifTrue: [connection increaseNegativeStrength}

"all connections from the lower division to the upper divisions of columns
changing their states are strengthen under the condition that this column was one of

the reasons for that change, i.e. the lower division activity was previously high."
self firedBefore ifTrue:

{lowerDivision outputs do:
[ :connection |
“for excitatory connections”
connection receiver column fired ifTrue:

[connection increasePositiveStrength).
“inhibitory connections”

connection receiver column wasinhibited ifTrue:
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[connection increaseNegativeStrength]

CoLUMN METHODSFOR: 'state calculations’'.

calculateActivity
“calculate the activities of both divisions of the column”

“Take into account previous activity of the upper division. The upper division
has integrating capabilities*
| lowerActivity |

upperDivision calculateActivity: 0.0.

“The upper division excites the lower division. Low activity in the upper division
means that the subgoal represented by the column (or part of the subgoal, since a goal
may have a multicolumn representation) is being searched. The activity is transmitted
to the lower division and , if the lower column is not excited enough to fire, also to other
columns. Other columns may also send their signals to this column, exciting it even
more (internal teedback foop).”

"It is assumed here that the upper division's activity is completely transmitted to
the lower division (the current activity is stored in tempActivity before it is committed at
the end of this method)"

lowerDivision calculateActivity: (upperDivision tempActivity).
“the column fires - both divisions are high”
((lowerActivity := lowerDivision tempActivity) > Division lowerUpperThreshold)

ifTrue: [upperDivision calculateActivity: lowerActivity].

“display the state of the column”
neurosolver changed: #displayColumnState: with: self.
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Object subclass: #Division

instanceVariableNames: ‘column inputs outputs realActivity curActivity
prevActivity prevPrevActivity tempActivity threshold activityUpCount activityDownCount
numberOfPositivelnfluences numberOfNegativelnfluences
numberOfPositivelylnfluenced numberOfNegativelyInfluenced thalamicinput
corticalinput '

classVariableNames: 'HighActivity Threshold LowActivity Threshold
LowerThreshold LowerUpperThreshold UpperThreshold

poolDictionaries: "

category: ‘Neurosolvers’

Division comment:

This is a class representing a cortical column's division. There are two such division
within a column: upper and lower. They are physically the same, but their behavior in
the

network is quite different.

The upper division is active if a concept represented by the column is searched for. it
the

cortex activates that division it can be read as: ‘is the concept A present under the
current

conditions?". If there are many other columns transmitt.ng to this one, it may happen
that the goal represented by the question is achieved. it could read as: “from the set of
active concepts (columns) is it justifiable to assume A?". All those transmitting columns
represent the sub-goals required to achieve the goal exemplified by this column.
Something else may occur: the receptors send excitatory signals to the column which
would be read as: "from what is known about the state of the world, the concept A may
be assumed". The state of the external world can be understood as the current set of
the facts known to the system. Forcing the parent goal (or concept) to wait for all its
sub-goals to be satisfied is similar to pushing on a stack. After the goal is achieved (i.¢.
the conditions for that are satisfied, which better expresses what actually is going on),
the reason for the activity of the division is gone. In our architecture it is accomplished
by the inclusion of another division, lower, into a column.

The lower division of a column takes all activity from the upper division, and additionally
from the outside. If the activity is high enough, the lower division send an inhibitory
signal
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to the upper division. That signal forces the activity of the upper division to diminish (the
goal has been achieved) which is equivalent to popping from a stack. The activity of the
lower division disappears as well, since it came from the upper one, and most of
associated external signals incoming to the division (from the receptors - thalamic
system) are short, so the whole column is deactivated. The lower division send its
signals to the upper divisions of related columns (next in a sequence) increasing their
activity. That connection represents the direction from the sub-goal to its parent goal. If
the signal is strong enough, the parent column fires as well.

Input signals from the thalamic system are able to activate the upper division to such
extent

that it causes the high level of activity in the lower division as well. The column fires
meaning that the goal has been achieved. Input signals are not persistent, so the
activity of the column declines.

DiviSION METHODSFOR: 'state calculations’

calculateActivity: value
“calculate new activity of the node with a startup vaiue”

| inputActivity |
inputActivity := value + (self getinputActivity).

“include thalamic and cortical inputs. The thalamic input comes from the
sensors, through thalamus to the lower division. The cortical input comes from other
areas of the cortex, for example from the limbic system - wishes, to the upper division”

"Note: if learning, there are only high, firing thalamic input (learning) signals”

inputActivity := inputActivity + thalamiclnput + corticallnput.

"assume that 1 is maximum”
(inputActivity > 1.0) ifTrue: [inputActivity ;= 1.0].

“set the activity level to the calculated value.
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NOTE: The activity is stored in a temporary value until it is committed after determinig
whether the column fires or not. If the column fires, the activity of the

upper division is set to zero, so no action potential is sent onto the outputs."
self tempActivity: inputActivity.
self realActivity: inputActivity.

DiviSiON METHODSFOR: 'control’.

getinputActivity

“scan inputs for action potentials and sum them up. Discard signals from the
divisions which were influenced by this division”

| inputActivity |
inputActivity := 0.
self inputs do: [:connection |

(connection transmitter wasinfluencedBy: (self column columniD))
ifFalse: [

inputActivity := inputActivity

+ (connection strength * connection actionPotential).

connection prevActionPotential: connection actionPotential.

AinputActivity
calculateModificationFactors

“this method calculates a fan-in and fan-out of activity from the perspective of 4
single division”

| tempFanin |

tempFanin := 0.
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(self activityUp)
ifTrue: |
activityUpCount := activityUpCount +1.
numberQfPositiveinfluences := numberOfPositivelnfluences
+ (tempFanin := (self fanin)).

(self activityDown)
ifTrue: |
activityDownCount := activityDownCount + 1.
numberQfNegativelnfluences := numberOfNegativelnfluences
+ tempFanin,

self setFanOut.

fanin
"determine how many inputs influenced behaviour of this division”

| tempFanin |
tempFanin := 0.
inputs do: [:connection |

(connection transmitter column firedBefore) ifTrue: |
tempFanin := tempFanin + 1

“there are no cortical inputs to a lower division, so we deal with an upper division, and it
has two inputs from every connecting column: from the lower division and from the
upper division, so if the column fired we counted twice"

AtempFanin / 2).

setFanOut
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| positiveFanOut negativéFanOut |

positiveFanOut := 0.
negativeFanOut := 0.
(self firedBefore) ifTrue: |
outputs do: [:connection |
(connection receiver column fired)
ifTrue: [positiveFanOut := positiveFanOut + 1].

(connection receiver column wasinhibited)
ifTrue: [negativeFanOut := negativeFanOut + 1].

1
numberQfPositivelyinfluenced := numberOfPositivelylnfluenced

+ positiveFanOut.
numberOfNegativelyinfluenced := numberQOfNegativelyinfluenced

+ negativeFanOut.

School of Computer Science, Carleion University

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Object subclass: #Connection
instanceVariableNames: ‘prevActionPotential actionPotential
nextActionPotential transmitter receiver numberOfinfluences weight’
classVariableNames: ‘LearningRate
poolDictionaries: "
category: ‘Neurosolvers'.

Connection comment:

Connection is a class representing intra- and inter-conlumnar connections as well as
connections from and to other parts of the system (thamic and manipulation systems).
The connection strength represents the probability that the receiver will fire if the
transmitter fire.

CONNECTION METHODSFOR: ‘access'

strength
“return the strength of the connection”

(self transmitter column neurosolver learningMode = #hebbian)
ifTrue: [*(self strengthHebb)]
ifFalse: {*(self strengthProbabilistic)].

strengthHebb
“return the strength of the connection”

Aweight.

CONNECTION METHODSFOR: ‘'modification’.

decreaseStrength

(self transmitter column neurosolver learningMode == #hebbian)
ifTrue: [self decreaseStrengthHebb)
ifFalse: [self decreaseStrengthProbabilistic).
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decreaseStrengthHebb

"decrease the strength of the connection regardless whether it is positive or
negative”

weight < 0 ifTrue:

[weight := weight + 0.1].
weight > 0 ifTrue:

[weight := weight - 0.1).

decreaseStrengthProbabilistic
"decrease the strength of the connection regardless whether it is
positive or negative”
numberOfinfluences < 0 ifTrue:
[numberOfinfluences := numberOfinfluences + 1).
numberOfinfluences > 0 ifTrue:
[numberOfinfluences := numberOfinfluences - 1}.
increaseNegativeStrength
(self transmitter column neurosolver learningMode =~ #hebbian)

ifTrue: [self increaseNegativeStrengthHebb}
ifFalse: [self increaseNegativeStrengthProbabilistic).

increaseNegativeStrengthHebb
“increase the inhibitory strength of the connection”

weight := weight - (0.1 / (self negativelnfluenceFactor)).

increaseNegativeStrengthProbabilistic
“increase the inhibitory strength of the connection™

numberOfinfluences := numberOfinfluences - 1.

increasePositiveStrength
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{(selt transimitter column neurosolver learningMode == #hebbian)
ifTrue: [self increasePositiveStrengthHebb]
ifFalse: [self increasePositiveStrengthPrebabilistic).

increasePositiveStrengthHebb
“increase the excitatory strength of the connection”

weight - weight - (((1 - weight) * LearningRate) / (seli positiveinfluenceFactor)).

increasePositiveStrengthProbabilistic
“increase the excitatory strength of the connection”

numberOfinfluences := numberOfinfluences + 1.
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Connection subclass: #LowerUpper

instanceVariableNames: "

classVariableNames: "

poolDictionaries: "
category: ‘Neurasolvers'.

UPPERUPPER METHODSFOR: "hebbian influence’.

negativelnfluenceFactor

| factor |

(factor := receiver numberOfNegativelyinfluenced) > 0 ifTrue: [*tactor] itFalse:

[*1]

positiveinfluenceFactor

| factor |

(factor := receiver numberQOfPositivelyinfluenced) > 0 ifTrue: [*Mactor] itFalse:

[*).
UPPERUPPER METHODSFOR: ‘access'

strengthbausal
“return the strength of the connection”

"excitatory connection”
(numberOfinfluences > 0) ifTrue: |
transmitter activityUpCount = 0
ifTrue: {"0.0}
ifFalse: [*1.0].

“inhibitory connection”

Schouol of Computer Science, Carleton University

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Aeprosolver ANecw gl Netaork Based on o Corticgl Column, Master Thesis, Andrze) Biess¢sad 143

(numberOfinfluences < 0) ifTrue: |
transmitter activityDownCount = 0
ifTrue: {*0.0]
itFalse: [*-1.0}.

"0.0.

strengthProbabilistic
“return the strength of the connection”

"self strengthCausal.

"can also be: "self strengthProbabilisticSimple”

"can also be: "strength probabilisticComplex"

strengthProbabilisticComplex
“return the strength of the connection”
"NOTE thatalways:
numberOfinfluences <= transmitter activityUpCount
and numberOfinfluences <= ~aceiver numberOfPositivelyinfluenced

9

| ups downs probability 1 probability2 influenced |

“no influence”
(numberOtintluences = 0)
ifTrue: {#0.0]
itFalse: |
(numberOfinfluences > 0)
ifTrue: {
“excitatory connection”
probability 1 := (ups := transmitter activityUpCount) = 0
ifTrue: [0.0]
itFalse: [(numberOfinfluences / ups)].
probability2 := (influenced :=
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receiver numberOtPositivelyIntluenced) - 0
itTrue: {0.0]
ifFalse: [(numberOfintluences - influenced)
* (receiver activityUpCount * mtluenced)}.
]
ifFalse: [
"inhibitory connection”
probability1 := (downs := transmitter activityDownCount) 0
ifTrue: [0.0]
ifFalse: [(numberOfinfluences / downs)].
probability2 := (influenced :=
receiver numberOfPositivelyInfluenced) - 0
ifTrue: [0.0]
ifFalse: [(numberOfinfluences / influenced)

* (receiver activityUpCount / mfluenced)].

*probability 1 * probability2) negated

strengthProbabilisticSimple
“return the strength of the connection”

| ups downs |

“no influence”
{numberOfinfluences = 0)
ifTrue: [0.0}.

“excitatory connection"
(numberOfinfluences > 0) ifTrue: [
(ups := transmitter activityUpCount) = 0
ifTrue: [*0.0]
ifFalse: [*"(numberOfinfluences / ups)).
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"inhibitory connection”
{numberOfinfluences < 0} ifTrue: |
(downs := transmitter activityDownCount) = 0
ifTrue: [0.0]
itfFalse: [{numberOtinfluences / downs) negated).
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Connection subclass: #LowerUpper
instanceVariableNames: "

classVariableNames: "
poolDictionaries: "
category: '‘Neurosolvers',
LoWERUPPER METHODSFOR: ‘hebbian influence’
negativelnfluenceFactor

| tactor |

(factor := receiver numberOfNegativeinfluences) > 0 if True: [*actor] ifFalse.

[~}
positivelnfluenceFactor
| factor |
(factor := receiver numberOfPositiveinfluences) > 0 ifTrue: [*factor] itFalse: [~ 1]
LoWERUPPER METHODSFOR: 'access'
strengthProbabilistic
‘return the strength of the connection”
"NOTE thatalways:
numberOfinfluences <= transmitter activityUpCount
and numberOfinfluences <= receiver numberOfPositiveinfluences”
| ups downs probability1 probability2 influences |
“no influence”
(numberOfinfluences = 0)

ifTrue: [*0.0]
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“excitatory connection”
ifFalse: [
(numberOfinfluences > 0)
ifTrue: |
probability1 := (ups := transmitter activityUpCount) = 0
ifTrue: [0.0]
itFalse: [numberOtinfluences / ups].

probability2 := (influences =
receiver numberOfPositivelnfluences) = 0
ifTrue: [0.0]
ifFalse: [\numberOfinfluences
/ influences) * (receiver activityUpCount / influences)].

]
“inhibitory connection”
ifFalse: |
probability1 := (downs := transmitter activityDownCount) = 0
ifTrue: [0.0]
ifFalse: [numberOfinfluences

/ downs).

probability2 := (influences :=
receiver numberOfNegativelnfluences) = 0
ifTrue: [0.0]
itfFaise: [(numberOfinfluences
/ influences) * (receiver activityUpCount / influences)].

Aprobabilityt * probability2)
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